
Kubervisor: 
Pod Anomaly Detection
David Benque, Amadeus S.A.S
Cedric Lamoriniere, Amadeus S.A.S



Who are we?

David Benque
@BenqueDavid
Software Engineer at Amadeus 

CNCF Meetup Organiser
Distributed systems
PaaS
Automation
Gopher

Cedric Lamoriniere
@cedriclam
Software Engineer at Amadeus

CNCF Meetup Organiser 
Distributed systems
Gopher

2



Amadeus

~600 million total bookings processed in 2016

1.3 billion passengers boarded in 2016

~450 000 queries per second (600 000 at peak)

3



Agenda

2 Solutions to increase reliability
➔ Kubernetes integrated solution
➔ Addons solution

Kubervisor: a pod anomaly detection solution
➔ Architecture
➔ Demo

3

1 Distributed Systems and Stability

4



Distributed Systems and Stability

1



Distributed systems and stability

Butterfly effect in distributed systems 

Lorenz Attractor

6



Distributed systems and stability

Butterfly effect in distributed systems 

Lorenz Attractor

7



Distributed systems and stability

Butterfly effect in distributed systems 

Lorenz Attractor

8



Distributed systems and stability

Load Balancing and multiple requests to a failing 
dependency could even make things worse

Lorenz Attractor

➔ All Fine ➔ B1 Instance fails
➔ Ai instances failure rate 25%

➔ B1 Instance fails
➔ Ai makes parallel calls to Bj
➔ Ai instances failure rate >25%

9



Distributed systems and stability

“A distributed system is one that prevents 
you from working
because of the failure of a machine that you 
had never heard of.”

Leslie Lamport

“We live in a rainbow of chaos.”
Paul Cezanne

Attractor

Edward Lorenz 

10



Solutions to increase reliability

2



Solutions to increase reliability

Client->A->B:  failure rate ⅙
Client->A-(x6)->B: failure rate 1

Proximity-based Load Balancing

Client->A->B:  failure rate ⅙
Client->A-(x6)->B: failure rate ⅓

• Ease root cause analysis
• Safeguards overall success rate by constraining fan out

Assumption: loadbalancing using round robin

12



Solutions to increase reliability
Proximity-based Load Balancing

kubernetes/kubernetes

kubernetes/community

pilot-agent proxy (envoy) is Availability Zone aware:
--availabilityZone <string> : The availability zone where this Envoy instance is running. When running Envoy as a sidecar in Kubernetes, 
this flag must be one of the availability zones assigned to a node using failure-domain.beta.kubernetes.io/zone annotation.

 13



Solutions to increase reliability

“ A Container can exceed its memory request if 
the Node has memory available. But a 
Container is not allowed to use more than its 
memory limit. If a Container allocates more 
memory than its limit, the Container becomes a 
candidate for termination.”

Container Termination

apiVersion: v1
kind: Pod
metadata:
  name: memory-demo-2
  namespace: mem-example
spec:
  containers:
  - name: memory-demo-2-ctr
    image: memtest
    resources:
      requests:
        memory: "50Mi"
      limits:
        memory: "100Mi"

14

https://kubernetes.io/docs/concepts/configuration/manage-compu
te-resources-container/

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/


Solutions to increase reliability
Probes

pod

Kubelet

Container A

Container B

Container C

apiVersion: v1
kind: Pod
…...
spec:
  containers:
  - name: A
   … ...
    readinessProbe:
      tcpSocket:
        port: 8080
      initialDelaySeconds: 5
    livenessProbe:
      httpGet:
        path: /healthz
        port: 8080
      periodSeconds: 20
  - name: B
   … ...
    readinessProbe:
      exec:
        command:
        - myscript
   … ...

Probe Implementation:
● tcpSocket
● httpGet
● exec

Liveness    →  kill container
Readiness →  mark endpoint as not ready

// Number of seconds after the container has started before 
liveness probes are initiated.
InitialDelaySeconds int32

// Number of seconds after which the probe times out. (default 1)
TimeoutSeconds int32

// How often (in seconds) to perform the probe. (default 10)
PeriodSeconds int32

// Minimum consecutive successes for the probe to be considered 
successful after having failed.(default 1)
SuccessThreshold int32

// Minimum consecutive failures for the probe to be considered 
failed after having succeeded. (default 3)
FailureThreshold int32

15https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/



• Keep it simple.
Complexity → Bugs 

Container-0 Container-1 Container-2 Container-3 Container-4 Container-5

Solutions to increase reliability
Probes

16



• Keep it simple.
Complexity → Bugs → Containers collective suicide

→ Service Outage

Container-0 Container-1 Container-2 Container-3 Container-4 Container-5

Solutions to increase reliability
Probes

17



• Keep it simple.
Complexity → Bugs → Containers collective suicide

→ Service Outage

• Don’t check external dependency chain
→ May not be able to restart from scratch
→ Difficult to find problem root cause
→ Failure propagation cutting valid branches

Solutions to increase reliability
Probes

Pod 
A

Pod 
B

Pod 
C

Container-0 Container-1 Container-2 Container-3 Container-4 Container-5

18

Pod 
A

Pod 
B

Pod 
C



Solutions to increase reliability

• The service mesh proxy 
implements the circuit breaker 

Circuit Breaker
https://martinfowler.com/bliki/CircuitBreaker.html

19



• The service mesh proxy 
implements retry policy

Solutions to increase reliability
Retries

1 2

20



• Local decision
• Probes: in each container
• Service Mesh: in each proxy

• Based on technical signals only
• Memory consumption
• Connection
• Response time
• Return Code
• Circuit Breaker working with HTTP only

Solutions to increase reliability
Limitations

21



a pod anomaly detection 
solution

3

Kubervisor:



Kubervisor
A pod anomaly detection solution

• Orchestrated decision
• decision at service level
• avoid collective suicide, service outage

23

• Decision based on technical or/and business information
• based on metrics
• currently supports Prometheus with PromQL.

• Kubervisor controller:
• divided in 2 components: Breaker, Activator
• differents strategies possible for the Breaker and Activator
• configuration in dedicated CRD: KubervisorService



Kubervisor
A pod anomaly detection solution

• KubervisorService CRD

• spec
• service: application service to watch

• breaker: breaker configuration
• global settings
• differents implementations

• activator: activator configuration
• mode: periodic, retryAndPause, retryAndKill
• period: pause duration

24



Metrics server

pod-asdvd

app: foo

pod-zqwrt

app: foo

pod-dawhu

app: foo

pod-pfdfn

app: foo

               Prometheus Kubervisor

scrape

Service: myApp

selector: 
app:foo

Kubervisor workflow
how to use it

25



pod-asdvd

app: foo

pod-zqwrt

app: foo

pod-dawhu

app: foo

pod-pfdfn

app: foo

               Prometheus Kubervisor

scrape

query

Service: myApp

selector: 
app:foo

Kubervisor workflow
Initialisation

KubervisorService
MyApp

serviceName: myApp
breakerConfig: …
activatorConfig: ...

create
KubervisorService

26



pod-asdvd

app: foo
traffic:yes

pod-zqwrt

app: foo
traffic:yes

pod-dawhu

app: foo
traffic:yes

pod-pfdfn

app: foo
traffic:yes

               Prometheus Kubervisor

KubervisorService
MyApp

serviceName: myApp
breakerConfig: …
activatorConfig: ...

scrap

query

Service: myApp

selector: 
app:foo

Kubervisor workflow
Initialisation

add label: 
traffic:yes

27



pod-asdvd

app: foo
traffic:yes

pod-zqwrt

app: foo
traffic:yes

pod-dawhu

app: foo
traffic:yes

pod-pfdfn

app: foo
traffic:yes

               Prometheus Kubervisor

KubervisorService
MyApp

serviceName: myApp
breakerConfig: …
activatorConfig: ...

scrape

query

Service: myApp

selector: 
app:foo

traffic:yes

Kubervisor workflow
Initialisation

update selector with 
traffic:yes

28



pod-asdvd

app: foo
traffic:yes

pod-zqwrt

app: foo
traffic:yes

pod-dawhu

app: foo
traffic:yes

pod-pfdfn

app: foo
traffic:yes

               Prometheus Kubervisor

KubervisorService
MyApp

serviceName: myApp
breakerConfig: …
activatorConfig: ...

scrape

query

Service: myApp

selector: 
app:foo

traffic:yes

Kubervisor workflow
Anomaly detection

29



pod-asdvd

app: foo
traffic:yes

pod-zqwrt

app: foo
traffic:yes

pod-dawhu

app: foo
traffic:yes

pod-pfdfn

app: foo
traffic:no

               Prometheus Kubervisor

KubervisorService
MyApp

serviceName: myApp
breakerConfig: …
activatorConfig: ...

scrap

query

Service: myApp

selector: 
app:foo

traffic:yes

Kubervisor workflow
Breaker activation

30



Kubervisor

Demo time!

A pod anomaly detection solution

31



Demo time !
 

• Flight price search: return 3 best prices for an "origin" and 
"Destination" city on the current day. 

32

pricer-ascca

app: pricer

pricer-zqwrt

app: pricer

pricer-dawhu

app: pricer

pricer-pfdfn

app: pricer

               Prometheus Kubervisor

KubervisorService
Pricer

serviceName: pricer
breakerConfig: …
activatorConfig: ...

scrap pricer_price{pod,od} histogram 

Service: pricer

selector: 
app:pricer



Kubervisor
Internal Architecture

33



Kubervisor
Internal Architecture

34



Possible Extension
 

• Kubervisor labels can be used by other controller

• Example Canary testing deployment

35

pod-zqwrt

app: foo
version: v1
traffic:yes

pod-pfdfn

app: foo
version: v2
traffic:no

Kubervisor Canary Deployer
update labels monitor labels

→ Cancel V2 deployment



Key takeaways
 

• Additional solution for improving your services reliability

• Based on standard: Controller with CRD, PromQL 
(Prometheus)

• Extendable: plugable Breaker and Activator implementation.

• Open source: test it, break it and open us issues

36



Questions?

• github.com/amadeusitgroup/kubervisor

• @cedriclam 

• @BenqueDavid


