
Performance and Scale @Istio Service Mesh
Surya V Duggirala, IBM

 Laurent Demailly, Google
 Fawad Khaliq, VMWare

About the speakers

2

Surya V Duggirala
suryadu@us.ibm.com / @Duggirala1

STSM, IBM Watson and Cloud Architecture & Performance Engineering

IBM

Laurent Demailly
ldemailly@google.com / @LaurentDemailly

Staff Engineer

Google

Fawad Khaliq
 fkhaliq@vmware.com / @fawadkhaliq
Senior Software Engineer

VMWare

mailto:suryadu@us.ibm.com
mailto:suryadu@us.ibm.com
mailto:ldemailly@google.com
mailto:fkhaliq@vmware.com

Agenda

• Introduction of Istio Performance and Scalability working group
• Our multi-pronged approach
• Performance Environments and Scenarios
• Performance Characterizations, Issues fixed and Results
• Performance across Multiple Industry Use Cases
• Istio performance/scalability next steps
• Q&A

Istio Performance Workgroup

What is Istio Service Mesh?

• Istio is an open platform that provides an uniform way to connect, manage and secure
microservices

• Istio Service Mesh offers the following key features for Microservices
• Intelligent Routing and Load Balancing
• Resilience across Languages and Platforms
• Fleet Wide Policy Enforcement
• In-depth Telemetry and Reporting
• Secure service-to-service authentication with strong identity assertions between services in a

cluster
• Istio can be deployed on multiple Cloud Platforms

• Kubernetes
• Nomad with Console
• Cloud Foundry (Future)
• Apache Mesos (Future)

Istio Service Mesh High Level Architecture

➢ Istio Data Plane consists of intelligent proxies (Envoy) deployed as sidecars that mediate and control all network communication between microservices

➢ Istio Control Plane is responsible for managing and configuring proxies to route traffic, as well as enforcing policies at runtime

➢ Istio has a main design goal of making the system capable of dealing with services at scale with high performance

Istio Service Mesh Performance Workgroup

https://github.com/istio/community/blob/master/WORKING-GROUPS.md#performance-and-scalability

https://github.com/istio/community/blob/master/WORKING-GROUPS.md#performance-and-scalability

Our approach

Istio Perf WG: multi pronged approach

• Code level micro benchmarks (go benchmarks,...)
• Synthetic benchmark

• Fortio
• Industry representative benchmark

• Blueperf
• “Scaling” performance characterization through the community

• Reusable tooling
• Multiple scenarios
• Multiple dimensions

• Automation
• Regpatrol
• Fortio

Performance environments & scenarios
GKE, IBM Cloud, AWS, Azure and on-prem

GCE/GKE

IBM Cloud

istio
customer
booking

flight
auth

jmeter MongoDB

InfluxDB

Driver

IBM Container Service

Grafana

Node 1 Node 2

Node 3 prometheus

Nodes/pods
metrics

istio metricsjmeter metrics

test results

real-time
dashboards

3-node
cluster

test controller

AWS

Jupyter
Notebook

Fortio Fortio Fortio

lwan

Fortio Fortio Fortio

Fortio Fortio Fortio

k8s-worker-1

k8s-worker-2

k8s-worker-N

k8s-worker

Your
Browser

ECS container

KOPS

k8s-api

Kubernetes Cluster

AWS

Jupyter
Notebook

Fortio

lwan

k8s-worker-1

k8s-worker-2

k8s-worker-N
k8s-worker

Your
Browser

ECS container

KOPS

k8s-api

Kubernetes Cluster

sidecar

Fortio

Fortio
 sidecar

Fortio

Fortio

Fortio
 sidecar

Fortio

Fortio

Fortio
 sidecar

istio-pilot

istio-mixer

AWS

Jupyter
Notebook

Fortio

lwan

k8s-worker-1

k8s-worker-2

k8s-worker-N
k8s-worker

Your
Browser

ECS container

KOPS

k8s-api

Kubernetes Cluster

sidecar

Fortio

Fortio
 sidecar

Fortio

Fortio

Fortio
 sidecar

Fortio

Fortio

Fortio
 sidecar

istio-pilot

istio-mixer

istio-auth

AWS

• fortio(s)->lwan
• pod to pod communication

Azure

AKS cluster

Target Service

sidecar

Nested Service 1
sidecar

Nested Service 2
sidecar

Istio-ingress

Jmeter
local machine

Azure
Load Balancer

HTTP gRPC

Azure
HTTP GRPC

On-prem

On prem K8s
1.9 cluster

Entry Service

sidecar

Nested Service 1
sidecar

Nested Service 2
sidecar

Istio-ingress

fortio
load generation

deployment

H/W load
balancer

gRPC gRPC

Istio Performance Characterization

Fortio
• Lightweight (no external dependencies beside golang and

optional gRPC) - 3 Mbytes image.
• Go library (used in e2e tests for functional checks: run N

requests, check the result codes, metrics)
• Command line and docker image (istio/fortio)

advanced echo server (similar to httpbin features and more)
• Runs at a set (lower than max) QPS for meaningful latency

data.
• Simple graphing/data visualization/exploration
• High (enough) performance: >400K qps single node self test

Fortio: max qps improvements

Fortio: 400 qps latencies

Fortio: 400 qps latencies

Issues we found and fixed

• Excessive logging (IOs + serialization)
• Memory leak / go routine contention in zipkin library
• Double mixer calls due to proxy filter misconfiguration
• Envoy (m)TLS perf issues
• TCP buffering and half close issues
• Mixer rule short circuiting
• Mixer cache key issue at ingress
• Pilot scale with hundreds of services (excessive memory and cpu usage)
• Mixer client lock contention. (still in progress)
• Mixer cache parameters. (not yet fixed)

Performance Summary
Over the last 3 monthly Istio releases:
(two of many scenarios using fortio)

• p50 (median) latencies at fixed, moderate 400 qps, dropping
34ms (0.5.1) → 19ms (0.6.0) → 14ms (0.7.1)

• max qps (2 vCPU) is increasing from
700 (0.5.1) to 1000 (0.6.0) to 1700 (0.7.1)

Absolute numbers are not where we want yet (single digit ms
EOY goal, lower overhead) but the trend is in the right direction.

https://fortio.istio.io/?s=qps_400-ingress_to_s2
https://fortio.istio.io/browse?url=qps_max-s1_to_s2-0.7.1-2018-04-05-22-04.json

Istio latency improvements

Istio 0.4

Istio 0.7.1

p99 and p99.9
improved by a factor of
10

Scenario: 20000 qps with 16
and 32 Fortio instances on
AWS (no Mixer) 8ms

0.8ms

Acmeair Microservices and Istio

jmeter
clients

MongoDB

Driver

istio-ingress

booking service

istio-proxy

auth service

istio-proxy

customer service

istio-proxy

flight service

istio-proxy

main service

istio-proxy

istio-mixeristio-pilot istio-ca

/auth

/booking

/customer

/flight

checks,
reports

Service Mesh

egress rules

config data

ingress rules

Istio Regression Patrol Master Dashboard

➢ A Regression Petrol automation framework is developed for Istio performance analysis used by Istio development community for daily builds

Istio Regression Patrol Master Dashboard

https://docs.google.com/file/d/1SfTgFAXrT4WTjLGdnMJcfU9LdLB-qAnr/preview

Istio Regression Patrol Results

Istio Performance Master Dashboard (Regression Patrol)

➢ An integrated Performance Dashboard is developed for Istio performance analysis used by Istio development community

Mixer Dashboard (Regression Patrol)

➢ Mixer dashboard gives comprehensive information about Mixer resource usage, individual adapter configuration and usage information

Istio Performance across Multiple Industry Use Cases

Acme Air Polyglot Microservices Benchmark

➢ Acme air polyglot microservices Benchmark is used to evaluate performance and scalability of Istio service mesh (https://github.com/blueperf/)

https://github.com/blueperf/

Page 36

Online Banking Microservices Application

● Online Banking workload simulates a typical retail Banking functionality
● This application is based a major North American Bank application in

production
● Online Banking Application does the following

○ Simulation of Retail on-line Banking scenario (UI, Security and Services)
○ Traffic is encrypted across the board and users are authenticated (using

TAI for Liberty)
○ Backend Services interaction is simulated with Stub application
○ Account Summary page is developed using Angular JS with

corresponding services layer simulation

Healthcare Microservices Application (BFF Pattern)

37

• Healthcare microservices workloads based on Rx and other Lines of Businesses of healthcare industry to evaluate performance and scalability Istio
Service Mesh

Online Banking Microservices with Istio Service Mesh

• Online Banking Microservices Applications can exploit Istio Service Mesh availing of all modern Service Mesh features
• To enable linear scaling of OLB Services, it is recommended to deploy Istio components to a separate set of Dedicated Nodes in the cluster
• While Istio Open Community is working hard to optimize the service mesh, at this point, one needs to allocate more Compute power to Istio components
• In the chart above, there is a 56% overhead to OLB with Istio mainly because of resource constraints on the worker node where the OLB Services are deployed

Online Banking Microservices CPU Consumption
 (Without Istio Service Mesh)

• Online Banking Microservices Application deployed on Kubernetes Service is able to support 158 Million API calls/day @337 ms response
time using 4 vCPU compute power

Online Banking Microservices CPU Consumption
 (With Istio v0.6)

• Online Banking Microservices Application deployed on Kubernetes Service with Istio service mesh is able to support 101 Million API
calls/day @298 ms response time using 8 vCPU compute power

Online Banking Microservices with Istio Service Mesh

• Online Banking Microservices Application with Istio service mesh performs and scales almost linearly on ICP Cloud Platform provided there are enough
resources allocated

• OLB Microservices with and without Istio service mesh can get to 1848 tps @377 ms response time, but Istio requires about 4 vCPUs additional compute
power

Acme air Microservices with Istio Service Mesh
 (Impact of Sidecar)

• For microservices connected to external services like Compose MongoDB etc., there will be additional CPU pressure on sidecars as shown above
• For microservices not connected to external services, this impact is much smaller

Next Steps / How can you participate ?

• Join the WG Meetings (9:30a Wed PST; 18:30 Europe time)

• Add and explore more dimensions to our existing standard tests:

payload sizes, gRPC, number of rules, number of service/endpoints,

mTLS on/off, mixer on/off, node placement, horizontal pod scaling, ...

• Add environments and cloud providers

• Analyze pprof, flamegraphs, cpu and memory profiles per component

• Contribute to (and fork/star) fortio (github.com/istio/fortio) and blueperf

(github.com/blueperf)

https://github.com/istio/fortio
https://github.com/blueperf

Q&A

Additional slides

Istio Support for Cloud Foundry

• CF Istio control plane component called ‘Copilot’ will work with Istio Pilot
• North –South traffic of Cloud Foundry will be handled by Copilot and Envoy replacing GO Router
• East-West traffic of Cloud Foundry can be handled by support of sidecar with OPI or Diego Garden redesign ???

Istio Service Mesh Support on Cloud Foundry

❑ There is a Cloud Foundry Project which is a BOSH release that packages Istio and Envoy for Cloud
Foundry

❑ This project is not complete and it is in active development
❑ Istio-release requires bosh-cli >= 2.0.45
❑ Design changes to Fabric to support sidecar pattern
❑ For more details, visit -> https://github.com/cloudfoundry/istio-release

https://github.com/cloudfoundry/bosh
https://istio.io/
https://github.com/envoyproxy/envoy
https://bosh.io/docs/cli-v2.html#install
https://github.com/cloudfoundry/istio-release

