
Deep Dive into
Thursday, May 3 16:35 - 17:10
Waldemar Quevedo / wally@synadia.com
Colin Sullivan / colin@synadia.com

Agenda

● Internal workings of NATS & NATS Streaming

● Highlights from the NATS Ecosystem

● Demos

NATS

NATS

● High Performance Messaging Server written in Go
⇢ originally started in Ruby with Eventmachine

● Pure PubSub on top of TCP/IP
● Simple Plain Text Protocol

⇢ makes writing clients for it much easier and fun
● Binary name is gnatsd

⇢ http://github.com/nats-io/gnatsd

http://github.com/nats-io/gnatsd

The NATS Protocol

telnet demo.nats.io 4222
Connected to demo.nats.io.
INFO {"server_id":"T8NVSIWciEMgVSyFLHiDEs",...,"max_payload":1048576}
SUB hello.copenhagen 1
+OK
PUB hello.copenhagen 5
world
+OK
MSG hello.copenhagen 1 5
world

Straightforward use with telnet to interact with the NATS server

The NATS Protocol

Client → Server := | PUB | SUB | UNSUB | CONNECT |
Client ← Server := | INFO | MSG | -ERR | +OK |
Client ⇆ Server := | PING | PONG |

Complete NATS protocol is only 10 commands

The NATS Clients

nc, _:= nats.Connect("nats://demo.nats.io:4222")
done := make(chan struct{})
nc.Subscribe("hello", func(m *nats.Msg){

log.Printf("[Received] %s", string(m.Data))
done <- struct{}{}

})
nc.Publish("hello", []byte("world"))
<-done

The latest features are in the Go client but there are clients available
for most platforms and are fairly simple

The NATS Server

$ gnatsd -m 8222 --logtime=false
[28110] [INF] Starting nats-server version 0.1.1
[28110] [INF] Starting http monitor on 0.0.0.0:8222
[28110] [INF] Listening for client connections on 0.0.0.0:4222
[28110] [INF] Server is ready

Server is a 7MB binary, no dependencies
Releases are in Github: https://github.com/nats-io/gnatsd/releases

https://github.com/nats-io/gnatsd/releases

Used Ports

Client

Routes
(6222)

NATS

NATSNATS

Clients
(4222)

HTTP
Client

Monitoring
(8222)

Production setup typically has the following 3 ports

NATS Clustering

Client

Cluster
Routes

NATS

NATSNATS

Client

For high availability, a full mesh of NATS servers can be setup

Client

Client

NATS Clustering

Clients can connect to any of the nodes to communicate with other
clients, the NATS cluster would then route the messages.

Client

Cluster
Routes

NATS

NATSNATS

Client

Client

Client
PUB MSG

PUB

MSG

PUB

MSG

NATS Clustering

Routing would only be done if clients showed interest in subject

Client

Cluster
Routes

NATS

NATSNATS

Client

Client

Client
PUB MSG

PUB

MSG

PUB

MSG

Setting up a NATS cluster

$ gnatsd -m 8222 -p 4222 --cluster "nats://127.0.0.1:6222"

$ gnatsd -m 8223 -p 4223 --cluster "nats://127.0.0.1:6223" \

 --routes "nats://127.0.0.1:6222"

$ gnatsd -m 8224 -p 4224 --cluster "nats://127.0.0.1:6224" \
 --routes "nats://127.0.0.1:6222"

A simple way to setup clustering is via the auto discovery support

Cluster Auto Discovery

NATS

NATSNATS

172.16.0.15:6222CONNECT

INFO {“connect_urls”: [“172.16.0.15:6222”]}

Whenever a new NATS servers joins, its network location is announced...

Cluster Auto Discovery

...then members already in cluster connect as well to form the full mesh

NATS

NATSNATS

CONNECT

Cluster Auto Discovery

NATS

NATSNATS

172.16.0.15:4222
CONNECT

INFO {“connect_urls”: [“172.16.0.15:4222”]}

Client

Its network endpoint is also gossiped to the clients already connected

Cluster Auto Discovery

NATS

NATSNATS

172.16.0.15:4222

❌

INFO {“connect_urls”: [“172.16.0.15:4222”]}

Client❌

On failure, clients that are able to...

Cluster Auto Discovery

NATS

NATSNATS Client

CONNECT

… failover to an available node

TLS support

INFO {“tls_required”: true}

Client

Create TCP connection

NATS

Secure connection to NATS can be setup to be enforced by the server

TLS support

Secure connection to NATS can be setup to be enforced by the server

Client TLS Handshake NATS

TLS support

CONNECT {...}

Client NATS

Secure connection to NATS can be setup to be enforced by the server

Secure NATS setup

Client

Routes TLS
(6222)

NATS

NATSNATS

Clients TLS
(4222)

HTTP
Client

Https /varz
(8222)

For a secure setup, TLS can be enabled for clients, routes, and the
monitoring endpoint as well

Resiliency

PUB hello

SUB hello

MSG hello
MSG hello

NATS

Client

Client

Client

PUB hello

NATS was developed with resiliency in mind. Keeping balance when
communicating is very important.

Resiliency: Slow Consumers

If a client is not able to consume messages the server is sending,
then it becomes a slow consumer.

PUB hello
SUB hello

NATS

Client

Client

Client

ClientPUB hello

PU
B
he
ll
o

MSG hello
MSG hello
MSG hello

Resiliency: Slow Consumers

The slow consumer is determined when the client has not been able
to consume new messages for more than 2 seconds.

PUB hello
SUB hello

NATS

Client

Client

Client

ClientPUB hello

PU
B
he
ll
o

-ERR ‘Slow Consumer’

nats.conf
write_deadline: ‘2s’ # is default

❌

NATS
Streaming

NATS Streaming

● Layer on top of NATS which enables at-least-once delivery
⇢ Codename: STAN

● It is the complete opposite of NATS
⇢ Stateful; it has built-in persistence of messages enabling message

replay features
● Protocol is Request/Response based using Protobufs
● Binary name is nats-streaming-server

⇢ https://github.com/nats-io/nats-streaming-server

https://github.com/nats-io/nats-streaming-server

NATS ➡� NATS Streaming

NATS
Streaming

Client

NATS

NATSNATS

NATS
Streaming

Server

NATS Streaming connects to a NATS server/cluster and uses it as
it’s transport to communicate with NATS Streaming clients.

NATS ➡� NATS Streaming

NATS clients and NATS Streaming clients can all use the same cluster

NATS
Streaming

Client

NATS

NATSNATSNATS
Client

NATS
Client

NATS
Streaming

Server

NATS ➡� NATS Streaming

Since NATS Streaming uses a NATS connection, it has the same
reconnect features found in NATS.

NATS
Streaming

Client

NATS

NATSNATSNATS
Client

NATS
Client

NATS
Streaming

Server
❌ ❌

NATS ➡� NATS Streaming

Since NATS Streaming uses a NATS connection, it has the same
reconnect features found in NATS.

NATS
Streaming

Client

NATS

NATSNATSNATS
Client

NATS
Client

NATS
Streaming

Server

NATS Streaming Fault Tolerance

NATS
Streaming

Client

NATS

NATSNATSNATS
Streaming

Server
Standby

NATS
Streaming

Server
Active

NATS
Streaming

Server
Standby

When using shared storage, the NATS Streaming server can be run in Fault
Tolerance mode so that extra servers are in standby and became active only on
active server failure.

NATS Streaming Clustering

For replication and high availability, NATS Streaming can also use the
Raft consensus algorithm.

NATS

NATSNATSNATS
Streaming

Server
Follower

NATS
Streaming

Server
Leader

NATS
Streaming

Server
Follower

NATS
Streaming

Client

NATS Streaming Clustering

NATS
Streaming

Client

NATS

NATSNATS

NATS
Streaming

Server
‘cluster-A’

NATS
Streaming

Server
‘cluster-A’

NATS
Streaming

Server
‘cluster-A’

NATS
Streaming

Server
‘cluster-B’

NATS
Streaming

Server
‘cluster-B’

Multiple NATS Streaming clusters can coexist using the same NATS cluster
by using different names

NATS Streaming using
Embedded NATS Server

NATS

NATS

NATS
Streaming

Server
w/ NATS

NATS
Streaming

Server
w/ NATS

NATS
Streaming

Server
w/ NATS

6222

6222

6222

4222
NATS

Streaming
Client

For convenience, the NATS Streaming server embeds a NATS server by
default which can be used as its transport.

NATS
Ecosystem

Official Docker Images

● The NATS Team maintains official Docker images
⇢ NATS: https://hub.docker.com/_/nats/
⇢ NATS Streaming: https://hub.docker.com/_/nats-streaming/

● They are very lightweight, using the FROM scratch to keep
few layers

https://hub.docker.com/_/nats/
https://hub.docker.com/_/nats-streaming/

Prometheus NATS Exporter

● Officially supported by NATS team
⇢ https://github.com/nats-io/prometheus-nats-exporter

● Can be used as a side car to monitor the /varz metrics from a
single NATS server.

github.com/prometheus

https://github.com/nats-io/prometheus-nats-exporter

Gloo + Envoy NATS Streaming

● Developed by the solo-io team as part of the Gloo project;
a function gateway

⇢ https://github.com/solo-io/gloo

● Gloo developed C++ clients for NATS & NATS Streaming
⇢ https://github.com/solo-io/envoy-nats-streaming

● Demo: https://www.youtube.com/watch?v=6mtvPrHfX1Q

github.com/solo-io

https://github.com/solo-io/gloo
https://github.com/solo-io/envoy-nats-streaming
https://www.youtube.com/watch?v=6mtvPrHfX1Q

nRPC: like gRPC but over NATS

● Interesting project developed by the rapidloop team
⇢ https://github.com/rapidloop/nrpc

github.com/rapidloop

https://github.com/rapidloop/nrpc

NATS Operator for Kubernetes

● Original contribution from Paulo Pires
⇢ https://github.com/nats-io/nats-operator

● Creates a CRD in Kubernetes which could be used to help
with the creation of NATS clusters

⇢ Current version: nats.io/v1alpha2

● Projects using it:
⇢ Kubeless project started using to add NATS support

https://github.com/kubeless/kubeless/pull/689

github.com/pires

https://github.com/nats-io/nats-operator
https://github.com/kubeless/kubeless/pull/689

NATS Operator: Example

apiVersion: "nats.io/v1alpha2"
kind: "NatsCluster"
metadata:
 name: "nats"
spec:
 # Number of nodes in the cluster
 size: 3
 version: "1.1.0"

 tls:
 # Certificates to secure the NATS client connections:
 serverSecret: "nats-clients-tls"

 # Certificates to secure the routes.
 routesSecret: "nats-routes-tls"

Demos

Thanks!

Be part of the NATS community :)
https://nats.io/community/

https://nats.io/community/

