
Kubernetes-style
APIs of the Future
The Kubernetes Resource Model 
is coming to an API near you.

Daniel Smith
dbsmith@google.com

@lavalamp (github)
@originalavalamp (twitter)



From the 
beginning, 
Kubernetes 

was API 
focused.



Kubernetes APIs evolved from a 
primordial soup of RESTy JSON.



People and 
automated 

systems used 
the API 

together.



We built an API platform.



We built an API platform.
Oops?



We built an API platform.
Not a mistake.



We needed different things from 
our APIs.



A brief, cherry-picked history of 
APIs





What if the API is about the 
existence or state of some 

resource?



CRUD & REST



We have the RPC version of 
object oriented programming.
But something still seems off.



gRPC + gRPC/REST gateway
message Item {

string size = 1;

}

message CreateItemRequest {

string name = 1;

Item item = 2;

}

message CreateItemResponse {

int response_code = 1;

}

...

service InventoryManagementService {

rpc Create(CreateItemRequest) returns (CreateItemResponse) {

option (google.api.http) = {

post: "/items/{name}"

body: "item"

};

}

rpc Update(UpdateItemRequest) returns (UpdateItemResponse) {

option (google.api.http) = {

put: "/items/{name}"

body: "item"

};

}

... // Get, Delete, ...

}



That’s great, but I need 4 
handlers and 8 data models for 

every resource.



API systems are opinions about 
how data should be transmitted 

between client and server.









The Kubernetes Resource Model 
is a set of requirements on all 

aspects of the API call.





The Kubernetes Resource Model 
goes beyond being object oriented.



Complexity Management



API Operation Complexity























State Complexity







Splitting problems into small 
pieces which can be acted on 

concurrently by controllers and 
users results in flexible, 
future-proof systems.





“Apply” allows users and systems 
to cooperatively determine the 

desired state of an object.







This opens up new avenues for 
cooperatively determining the 

state of a resource. 



The Kubernetes Resource Model 
makes `apply` possible.



Why will you see APIs following 
the Kubernetes Resource Model 

in the future?



It’s because a lot of real-word 
systems are a good fit for this 

resource model.



Virtual resources:
VMs, load balancers, database 

instances, service mesh 
endpoints, ...



Physical resources:
network switches, routers, ...



Physical resources:
smart light bulbs, door locks, 

thermostats?



Can you keep your system’s 
entire state diagram in your head 

all at once?



What happens to your if 
statements and flow diagram if 

you add a few new states?



The Kubernetes Resource Model 
allows you to effectively manage the 

complexity of your API ecosystem.



...and that is why you will 
encounter this style of API 

in the future.



Thank you


