
Kubernetes Runs Anywhere,
but Does your Data?

Jared Watts, Maintainer for Rook, Founding Engineer at Upbound

Kubernetes Runs Everywhere

• Kubernetes is the defacto container orchestrator
• Supported by everyone

• Cloud providers (Google, Amazon, Microsoft, etc.)
• Bare-metal, on-premise, hybrid environments
• Local machine and developer laptops

• Most importantly, it allows your apps to run everywhere too

The Power of Portability

• A portable solution can run in diverse environments
• Gives us the “power of choice”
• Able to take advantage of the best environment for the job

• Cost
• Service quality
• Features
• Resiliency (multi-cloud)
• Compliance

How does Kubernetes do it?

• Common abstractions and primitives for application
deployment concepts

• Pods, Deployments, Services, etc.
• “Write once, run many”
• Allows the same exact application deployment to run in all the

environments Kubernetes runs in
• Developers can focus on building their application, not the

environment details

Storage Abstractions

• Real applications are stateful - they need to persist data
somewhere

• There are useful abstractions defined for storage too
• Persistent Volumes (PVs)
• Persistent Volume Claims (PVCs)
• Storage Classes
• Plugins (CSI)

• Helps support portability of stateful applications

Persistent Volumes and Claims

• Persistent storage for applications is
normalized on the concept of a volume

• Independent of the backing storage
provider or solution

• This abstraction is a powerful concept
that allows applications to not know
details about where the storage is
coming from

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv001
spec:
 capacity:
 storage: 250Gi
 volumeMode: Filesystem
 accessModes:
 - ReadWriteOnce
 storageClassName: fast

Storage Classes

• “Blueprints” that abstract away details of
how to fulfill storage requests
• Admin fills in details so apps don’t have to

• Provider, quality-of-service levels, backup
policies, etc.

• Enables dynamic (automatic) provisioning
of storage for applications on-demand
• Enormous leap beyond static provisioning

kind: StorageClass
apiVersion: storage/v1
metadata:
 name: durable
provisioner: azure-disk
parameters:
 location: eastus

Volume Plugins

• Allows storage solutions that are external to the cluster to be
integrated into Kubernetes

• Managing and deploying the storage solution is an exercise
left to the reader (or admin)

• Often relies on provider specific managed services
• Google Persistent Disk
• Amazon EBS
• Azure Disk

• Focus is on consumption side, not provider side
• External storage solutions have to be accessible
• This dependency causes deployment and management

burden

Where Storage Falls Short

Where Storage Falls Short

• Not all data behaves like a volume
• Data intensive workloads have needs for higher level storage

types
• Databases, object stores, key-value stores, caches, message

queues, etc.
• No portable abstractions exist for these types of data/storage

services
• Applications often have to depend on proprietary managed

services external to the cluster and specific to the environment
• Vendor lock-in

• We need something more in order to make stateful apps as
portable and environment agnostic as Kubernetes itself

• What about storage that runs inside the Kubernetes cluster?
• take advantage of its powerful abstractions

• What about a broader set of storage abstractions?
• utilize rich managed services in a portable way

A Portable Storage Solution

• Wordpress is stateful (needs a
database)

• All cloud providers have a managed
database service

• Wordpress and its data needs could
all be described in one YAML that
works across environments

• At deployment time, the right service
gets set up

A Portable Stateful Application

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: wordpress
 labels:
 app: wordpress
...

apiVersion: databases/v1alpha1
kind: MySql
metadata:
 name: mydb
spec:
 size: 200Gi
 high-availability: auto
 backup-schedule: default

Extending Kubernetes - CRDs

• Teaches Kubernetes about new first-class objects
• Custom Resource Definition (CRDs) are arbitrary types that

extend the Kubernetes API
• look just like any other built-in Kubernetes object (e.g. Pod)

• Persisted in etcd

Extending Kubernetes - CRDs

• Allows for native management experience with kubectl
• kubectl create -f my-storage.yaml

• Doesn’t have any functionality or logic by itself
• Captures user’s desired state of the system
• We can define powerful new abstractions with CRDs

CRD Declaration

apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
 name: database.rook.io
spec:
 group: rook.io
 version: v1alpha1
 scope: Namespaced
 names:
 kind: Database
 listKind: DatabaseList
 plural: databases
 singular: database

Extending Kubernetes - Operators

• Special type of Controller we’re already familiar with
• Codifies domain expertise to deploy and manage an

application
• Automates actions a human would normally do

• Allows users to consume a software system without any
operational experience

Operator’s Control Loop

• Control loop that watches for events (add/update/delete) on
your CRDs and changes to cluster

• Reconciles the user’s desired state with the cluster’s actual
state
• Observe - discover current actual state of cluster
• Analyze - determine differences from desired state
• Act - perform operations to drive actual towards desired

• Continuously drives towards the desired state

Let the Operator Manage it

• After a software system is deployed, it needs to be managed
• Day 2 operations

• Ensure critical health and functionality
• Handling failures of key components, self-healing
• Scaling the system in accordance with load

• Shuffling data without loss or downtime
• Backups and restorations
• Rolling upgrades and rollbacks

• Migrations across versions with breaking changes
• Regularly recurring maintenance tasks

Kubernetes API and Clientsets

• Kubernetes API is the way to get anything done in the cluster
• Clientset: A collection of clients that can each talk to an API

group
• Often used from a controller’s Go code

• Hugely important in both discovering system state and
performing operations to influence that state

pods, err := clientset.CoreV1().Pods(“default”).List(opts)

sc, err := clientset.StorageV1().StorageClasses().Create(sc)

Informers

• We want to be know when an event happens
• We could poll the API server, but that’s expensive
• Informer: Intelligently and efficiently watch for object events

on the Kubernetes API server
• Maintains an local cache of objects so we don’t always have to

query the API server
• SharedInformers should be used when you have multiple

controllers

Informer Usage

_, podInformer := cache.NewInformer(
 source,
 &v1.Pod{},
 time.Second * 30,
 cache.ResourceEventHandlerFuncs{
 AddFunc: handlePodAdd,
 UpdateFunc: handlePodUpdate,
 DeleteFunc: handlePodDelete,
 })
go podInformer.Run()

• Level driven, not edge driven
• Can’t assume your controller is always running, it may miss

the event “transition”
• Perform reconciliation of desired and actual state any time a

difference is observed

Event Triggers

• By extending Kubernetes, we can define new useful portable
abstractions

• Users and apps can describe their need for storage in a
general way

• All of an app’s requirements could be described in a single
manifest now, including storage

• Operators can make that desire for data “just happen” in any
environment
• Bring the storage INTO the cluster
• Provision cloud provider managed services

So...Running Your Data Anywhere

Demo

Let’s make some storage happen!

Questions

Questions?
@jbw976 (github/twitter)

@rook_io
https://rook.io/

https://upbound.io/
(we’re hiring!)

https://rook.io/
https://upbound.io/

