
How to get a service mesh into
production without getting fired

William Morgan

Service mesh connoisseur

@wm

You’re standing on the precipice...

Service Mesh Land
where everything is

wonderful

Failure Valley

You

@wm

About me

William Morgan

Used to write code

Now writes email at Buoyant

Putting service meshes into prod for almost 2 years!

http://buoyant.io
http://linkerd.io
http://conduit.io

@wm

About this talk

This is a talk about two things:

1. Manipulating human beings
2. Good software engineering practices

At the end of this talk:

You’ll be prepared to take a service mesh to prod!

(Or know why that isn’t a good idea)

@wm

Are you really going to get fired?

If you’re really worried about your job:
talk to me after class.

@wm

1. You can’t convince your colleagues that it’s a good idea

2. You convince them, but getting it into prod fails

3. You get it into prod, things go wrong, it’s not your fault, but you
get blamed anyway

4. Things go wrong, and it IS your fault

Four ways to fail

@wm

Failure Scenario I

You can’t convince your peers that it’s a good idea.

Well, is it a good idea?

Why are you doing this?

What problem are you trying to solve?

@wm

Good Problem / Bad Problem

@wm

Good problem / bad problem

We need a service mesh!BAD PROBLEM

@wm

Good problem / bad problem

Our services are written in 6 different
languages and we don’t have consistent

telemetry libraries across them.

GOOD PROBLEM

@wm

Good problem / bad problem

We want to be cloud native.

BAD PROBLEM

@wm

Good problem / bad problem

We have 70 service teams and getting them to
add TLS to all of their services would be an

impossible organizational task.

GOOD PROBLEM

@wm

Fun Game

Google made Kubernetes and Google makes a
service mesh and so I need a service mesh

BAD PROBLEM

@wm

A service mesh isn’t always the answer.
Solve the right problem.

@wm

William’s Guide to Convincing Human Beings

1. Identify who is affected (the stakeholders)

2. Determine what the service mesh improves for them (the
incentives)

3. Understand what they’re worried about (the concerns)

4. Mitigate concerns, extol incentives, and communicate!

This is called getting stakeholder buy-in.

(Morgan’s 4th Law: sufficiently advanced engineering work is
indistinguishable from sales.)

@wm

Stakeholder Incentive Concern

Platform engineers ● Unified visibility across all services
● Failure isolation

● Is it reliable?
● Will it introduce complexity?

Developers / service
owners

● Remove complex communication logic
from your code

● Easily run parallel versions of a service

● What do I have to change?
● Do I have to learn a new

complicated way of doing things?

Security team ● Consistent application of TLS and
authz/authn across services

● Policy

● Will it make things less secure?
● What new attack vectors are

introduced?

The Management ● Faster pace of development
● Fewer outages

● What dependencies are we
introducing to our business?

Examples

@wm

Case study: 4k-person education co.

Problem: Long-running (9 months!) feature freezes. Making
progress on product features is difficult.

Incentive: Linkerd can run parallel service versions concurrently,
so that dev teams can continue iterating.

Concerns: Reliability. Changing workflows.

Solution: Address concerns via testing & education during Linkerd
roll out. Has been in prod for over one year.

@wm

Failure Scenario II

You convince your peers, but the rollout to prod fails

Are you trying to boil the ocean?

Have you taken the time to address risks?

Are you clearly communicating the value?

Is it taking too long to demonstrate value?

@wm

Case study: Multi-billion$ finance co.

Production deploy: Complex rollout of Linkerd. Multiple configs,
multiple envs (including non-K8s), blue/green deploys, NGINX,
hardware load balancers, etc.

Production failure: Lots of hard-to-reproduce issues. Hard to
understand what’s going on. Mitigations, but not great ones.

Almost removed Linkerd from prod (luckily, we fixed thigns before
this!)

@wm

What went wrong?

Root cause:

� Linkerd bugs (yes, these sometimes happen)
� Hardware LB bugs/misconfiguration

These were actually minor! Real problem was the compounding
factors:

ˇ Complex environment
ˇ Insufficient communication
ˇ Hard to understand Linkerd’s internal state

@wm

Lessons learned

● Start small. One config, one environment. (Product features
can help!)

● Encourage communication. Sometimes it takes work to make
different teams talk to each other.

● Get good diagnostics. You must be able to clearly reason about
what the service mesh is doing when things go wrong. (Product
features can help!)

@wm

The importance of diagnostics

Prod bugs are often hard-to-reproduce, situational bugs.

Diagnostics are critical for these situations.

@wm

Examples of good diagnostics

• Headers (l5d-error) annotating failed requests

• Failure metrics (connection-level errors vs app-level errors)

• Access to internal state (client-state.json, k8s-namer-state.json)

• Human-facing “admin” dashboard

• Error-tracking commands (conduit wtf)

@wm

Failure Scenario III

“Our thing is breaking! It must be the service mesh!”

The service mesh is new, strange, and sits in between everything.

It will take time before people stop blaming the service mesh.

@wm

Case Study Bingo

Things that Linkerd has been blamed for:

● App servers failing (running out of file descriptors)
● Huge network latency (MTU mismatch for network segments)
● Service failure (bugs in code, poor failure logging)
● Connection timeouts (HW LBs ran out of IPs & reusing ports)
● Apps being unreachable (firewall misconfiguration)

@wm

Passing Scenario 3

You can’t avoid misplaced blame. But you can be prepared.

1. Understand what the service mesh does (and doesn’t do)

2. Use a service mesh that is debuggable & introspectable

3. Education! Documentation! Lunch ‘n learns! Teach teams how
to understand and diagnose issues themselves.

@wm

Failure Scenario IV

Things go wrong, and it IS the service mesh

Morgan’s 3rd law: To take down prod, you must first be in
prod.

(Corollary: If you want to be really safe, never put anything
into prod.)

This will happen and you need to plan for it.

@wm

Anatomy of a Production Kubernetes Outage - Oliver Beattie, Head
of Engineering, Monzo Bank

Linkerd took down a bank! (sorta)

• Kubernetes had a bug

• Linkerd had a bug exposed by Monzo’s mitigation for K8s’s bug

• Public postmortem: great example of learning from failure

Case study: Monzo

@wm

1. Remove the culture of blame

2. Learn from failures and outages

3. Quantify trade-offs: the cost per 9 of uptime

4. Understand service mesh failure modes, and have a game plan!

Preparing for real failures

@wm

How to get a service mesh into prod

1. Make sure you’re solving real problems

2. Find stakeholders and make them happy

3. Roll out incrementally

4. Get results fast and communicate them

5. Accept that things will go wrong and have a plan

6. Profit???

@wm

Q&A

THANK YOU

Morgan’s 1st Law: Try out Conduit [conduit.io] and give it a GitHub star!
(Corollary: Hands-on demos in our booth & check out the other Linkerd talks)

https://conduit.io/

@wm

Linkerd @ Kubecon EU

Wed 11:55 From Unreliable RPC to Resilience with
Linkerd

Edward Wilde, Form3

Wed 17:10 Anatomy of a Prod Kubernetes Outage Oliver Beattie, Monzo

Thu 11:55 How a Service Mesh Helped Us Build
Production Cloud-Native Services

Israel Sotomayor, Moltin

Thu 15:50 Hands-on workshop w/Linkerd and
Conduit (Linkerd Intro session)

Your friends at Buoyant

Fri 14:45 Lightning talks! (Linkerd Deep Dive) BigCommerce, SoundCloud,
BrandWatch, AtTest

