
Good Enough for the Finance 
Industry:

Ygrene Energy Fund, Engineers: Austin and Zach

Achieving High Security at Scale with 
Microservices in Kubernetes



What is Ygrene?
An why we focus on security.

*it’s also the word “energy” spelled backwards



What is this talk?
Cloud Native Security tips for any skill level.



Code & Containers
A perfect harmony… kinda



Containers are Awesome!
They solve so many problems in dev, but add many in production too.



Risk Management with Docker

What are the risks we care about?

1. Unexpected container contents running in production

2. Data leakage into container

3. Container os and app level vulnerabilities



Mitigation: Building in Security

Before the container is pushed to a repo it goes through some policy 
enforcement.

1. Dockerfile Policy
a. Base Image Policy
b. Best Practices for runtime

2. Application/CVE Policy
a. Code dependency checking
b. Static Analysis
c. Penetration test
d. Linux dependency checking

3. Identity Policy
a. How to use notary securely
b. Base image identity verification
c. Image sign



Security TestingDockerfile Policy BuildApp Dep. 
Check Signing and Push

Linters
FROM policy

OWASP scanner
Static Analysis

Base image identity 
CISP best practices

Zed Attack Proxy
CVE scanning

Identity verified
Auditable push
Tag based on code & 
container os version

One pipeline to rule them all



App Dep. 
Check Security TestingDockerfile Policy Build Signing and Push

Dockerfile Policy

The goal is to achieve CISP Docker 
standards and internal organizational 
policies. Some tools:

https://github.com/austbot/lineage
https://github.com/hadolint/hadolint
https://github.com/replicatedhq/dockerfilelint
https://www.cisecurity.org/benchmark/docker/
https://github.com/docker/docker-bench-security

1. FROM policy - Enforcing specific 
base/intermediary images.
a. Use “slim” versions, Alpine, Debian-Slim
b. Use security focused os, Amz Linux, 

RedHat
c. DON’T USE :latest

2. Best Practices
a. Don’t run as root
b. Check dep/package checksums
c. Remove privileged binaries

https://github.com/austbot/lineage
https://github.com/hadolint/hadolint
https://github.com/replicatedhq/dockerfilelint
https://www.cisecurity.org/benchmark/docker/
https://github.com/docker/docker-bench-security


Security TestingBuild Signing and PushDockerfile Policy App Dep. 
Check

Tools
https://www.owasp.org/index.php/OWASP_D
ependency_Check
https://github.com/rubysec/bundler-audit
https://github.com/albuch/sbt-dependency-c
heck
https://www.owasp.org/index.php/Source_C
ode_Analysis_Tools
https://github.com/GoASTScanner/gas

Application/CVE Policy

The goal is to leverage community 
work to weed out clear security 
problems. 

Static Code Analysis

Dependency CVE Checking

https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://github.com/rubysec/bundler-audit
https://github.com/albuch/sbt-dependency-check
https://github.com/albuch/sbt-dependency-check
https://www.owasp.org/index.php/Source_Code_Analysis_Tools
https://www.owasp.org/index.php/Source_Code_Analysis_Tools
https://github.com/GoASTScanner/gas


Security Testing Signing and PushDockerfile Policy App Dep. 
Check Build

Identity Policy & Dockerfile Policy

We only allow signed base images using Docker Content Trust (Notary)

Our docker container build will validate checksums of resources needed through 
curl/wget

We always squash to get rid of secrets or keys that maybe needed for build but 
not runtime.



Signing and PushDockerfile Policy App Dep. 
Check Build

Application/CVE Policy

After the container is built we scan the OS for 
vulnerabilities. The build is rejected if there are 
high vulnerabilities. On the registry after push 
the image is scanned passively and we are 
notified of new CVE’s affecting our containers.
Then we attack the container using OWASP 
Zaproxy.

Security Testing

Tools
https://www.zaproxy.org/
https://github.com/eliasgranderubio/dagda
https://www.clamav.net/
https://coreos.com/clair/docs/latest/

https://www.zaproxy.org/
https://github.com/eliasgranderubio/dagda
https://www.clamav.net/
https://coreos.com/clair/docs/latest/


Dockerfile Policy App Dep. 
Check Build Security Testing Signing and Push

Identity Policy

Developers can build images for local dev, ect… 
Only build servers can build images to be run in 
production. This helps move away from manual, 
but its still possible if necessary.

Notary Tips:

a. Never use your root key.
b. Delegations keys all the way. 

Tools
https://quay.io



ONLINEOFFLINE

ROOT TARGET DEL.

DEL.

DEL.

Trusted Builder: Build 
Server

Trusted Builder: 
Third Party who builds code

We don’t use our root key or targets key anymore. Use delegation 
keys, they can easily been revoked.

A good way to use Notary.



Cluster/Cloud*

*or co-lo, corporate datacenter...



Issues in Kubernetes for the Risk Averse

● Locus of Control
● OSS
● Attack Surface
● Same vulnerabilities as Virtualization

○ 3rd party dependency vulnerabilities (covered earlier)
○ OS Vulnerabilities (covered in containers)
○ Network vulnerabilities (kube-dns and such)
○ Auth-z, Auth-n

● Improper cluster bootstrap and setup



K8s Community Tools to Mitigate Risks

● Kubernetes’ list of 1000 API Server Flags and Feature Gates
○ RBAC

■ Adjust the default service account for the namespace, it’s fairly permissive
○ API Server Admission Controllers

■ Mutating/Validating
○ Audit Logging
○ Network Security Policies
○ Pod Security Policies
○ Taints and Tolerations

● Kops, Kubespray, Kubeadm...don’t have security focused defaults



External Tools to Help Mitigate Risks

● Aqua Scanner’s Kube Bench project
● Dex or other tools for IAM inside the cluster
● Service Mesh tools (such as Istio, Linkerd, Conduit and others…)



Use a managed service.

GKE, AKS, EKS, Tectonic, and most of the other vendors in 
the showcase...



If you can’t use a managed service

● Use a tool like Kops 
● Advantages:

○ Git versioning of your K8s cluster 
○ Well validated, automated update and roll-back strategy between versions of K8s
○ Allows for ultimate configurability for enabling cloud best practices for security are 

followed

● Disadvantages:
○ You’re on your own for issue diagnosis
○ Higher management overhead



Kubernetes is Good for Ygrene

ygrene.com/careers
ygrene.tech

Ygrene is Great for the Planet

Come work with us!


