
Function Composition in a
Serverless World

Timirah James
Developer Advocate
Platform9 Systems

@timirahj @erwinvaneyk

Erwin van Eyk
Software Engineer
Platform9 Systems

1

@fissionio

https://twitter.com/erwinvaneyk

First, what’s FaaS?
Function-as-a-Service enable developers to deploy parts of an application on an “as needed”

basis using short-lived functions.

Benefits of FaaS:

● Complete abstraction of servers away from the developer
● Billing based on consumption and executions, not server instance sizes

● Scaling services is simplified

2

What is Function Composition?

The concept of (re)using smaller functions
to create complex functions.

3

…Super function combinations

Example App

4

Recognize Image

Function A

Function B

Cat

Cat KatTranslate Eng to Danish

5

Can we combine both functions into one service?

Kat

Approaches

6

Manual Compilation

Direct/Chaining

Coordinator

Event-Driven

Workflows

Manual Compilation
Merge functions on a source code level.

● One big function that calls all other
individual functions.

● One big task from FaaS
framework’s point-of-view.

7

8

 func recognizeImage(image) {

 // A: Send the JPEG to 3rd Party AI
service for standard image tagging.

}

 func translate() {

// B: Translate text from Eng to Danish

 }

 func combo() {

 recognize(image)

 translate()

 }

Pros:

● Very simple, no framework
needed at all

● No serialization overhead

Cons:

● Function gets bigger and may load
slowly

● Cannot scale independently

9

Merged Function

Scaling

Function A
Function B

vs.

Instance 1 Instance 2 Instance 1

Instance 2

10

Function B

Function B
Function AFunction A

Function B

Function A

Function A

Direct Functions (chaining)
Form a chain, calling each other.

● Each task is a separate FaaS
function.

● Each function knows what comes
after it and calls it.

11

 func recognizeImage(image) {

 // A: Send the JPEG to 3rd Party AI
service for standard image tagging.

// HTTP call to translation function

}

 func translate() {

// B: Translate text from Eng to
Danish

 }
12

Pros: Cons:

● Each function waits for the next
function, wasting $

● Responsibility for things like
handling failures, and thinking
about fallbacks/retries.

● pains of updating a function

● No external components
needed

● No serialization overhead

13

Coordinator Functions
Functions that manage the execution of other functions by calling them directly.

● One “omniscient” function calls
each function (via remote HTTP);
manages the execution flow.

● Similar to direct functions, except
each function is unaware of the
other functions.

14

15

Pros:

● No need to modify the primitive
functions

● Very flexible; user can
manipulate the control flow how
they like. (Separation of
concerns)

Cons:

● Overhead of an extra function

● Coordinator is a long running
function (it starts first, and ends
last).

16

Event-Driven Function Composition
Functions emitting and reacting to events on message queues.

17

Idea: focus on the data flow instead of the control flow.

18

19

● Get all the luxury of message queues (e.g. messaging, error handling).
● Decoupled functions
● Commonly used and well understood architecture.

Pros

● Web of implicit dependencies.
● Difficult to version or upgrade functions.
● Supports limited control flow constructs. (e.g. conditional and on-error

constructs)

Cons

20

Workflows
Create a “flowchart” of function interactions.

21

22

Workflows are everywhere!

Business Processes Data Pipelining DevOps

Apache Airflow

23

FaaS-focused Workflows

Azure Logic AppsAWS Step Functions

24

Architecture

Deploys on Kubernetes
and Fission

Stores events not state

Executes state machines

25

To follow along or to try it out:

https://github.com/fission/fission-workflows/examples/demo-kubecon2018

Demo

26

https://github.com/fission/fission-workflows/examples/demo-kubecon2018

● Centralization of composition logic, logging, and visualization
● loosely coupled functions
● Handles communication complexity (latency, retries, failures, etc.)
● Improved performance (better/anticipating scheduling of functions)

Pros

● More infrastructure complexity
● Need to learn workflow-specific language or DSL

Cons

27

Approaches (recap)

28

Manual Compilation

Direct/Chaining

Coordinator

Event-Driven

Workflows

Which approach should you
use?

29

Try them out here:
https://github.com/fission/faas-composition-patterns

https://github.com/fission/faas-composition-patterns

Serverless is LIT!!!

30

THANK YOU.
Fission.io

blog.fission.io

slack.fission.io

github.com/fission

Twitter: @fissionio, @timirahj, @erwinvaneyk
31

http://blog.fission.io
http://slack.fission.io

