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What is Envoy?

The network should be transparent to applications. When 
network and application problems do occur it should be easy to 
determine the source of the problem.



Envoy design goals

● Out of process architecture 
● Low latency, high performance, dev productivity 
● L3/L4 filter architecture
● HTTP L7 filter architecture 
● HTTP/2 first
● Service/config discovery 
● Active/passive health checking
● Advanced load balancing
● Best in class observability
● Edge proxy
● Hot restart



Envoy architecture diagram
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Envoy threading model (c10k)
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● Connection per thread does not scale
● Scaling requires many connections per thread: “c10k”
● Requires asynchronous programming paradigms: harder
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Envoy threading model (overview)
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Envoy threading model (RCU)

● RCU = Read-Copy-Update
● Synchronization primitive heavily used in the Linux kernel
● Scales extremely well for R/W locking that is read heavy 
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Envoy threading model (TLS and RCU)
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● TLS = Thread Local Storage
● TLS slots can be allocated dynamically by objects
● RCU is used to post shared read-only data from the main thread to workers



Envoy threading model (cluster updates example)
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● Complete example of TLS and RCU for cluster updates



Envoy hot restart (overview)
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● Full binary reload without dropping any connections
● Very useful in legacy/non-container scheduler worlds



Envoy hot restart (mechanics)
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● Stats/locks kept in shared memory
● Simple RPC protocol over unix 

domain sockets (UDS)
● Sockets, some stats, etc. passed 

between processes
● Built for containers



Envoy stats (overview)
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● Store: holds stats
● Sink: protocol adapter (statsd, gRPC, etc.)
● Admin: allows pull access
● Flusher: allows push access
● Scope: discrete grouping of stats that can 

be deleted. Critical for dynamic xDS on top 
of hot restart shared memory



Envoy stats (TLS scopes)

1. Store is global
2. Stats first looked up in TLS cache
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Envoy stats (TLS histograms)

Parent 
histogram

TLS histogramTLS histogramTLS histogram

TLS histogram

Histogram A

Histogram B

&Current 
histogram

recordValue(...) (1)

Merge 
histogram (2)

TLS post() to swap 
current (3)

TLS post() back to 
continue merge (4)

Merge all 
background 

histograms (5)

(1) TLS histogram values recorded into 
“current” without locks
(2) Period merge/flush
(3) Post to each worker to swap current 
histogram (record now happens on 
alternate)

(4) Post back to main thread to continue 
merge
(5) Merge all TLS histograms without 
locks 



Summary

● Bias for developer productivity without sacrificing high throughput and low 
latency

● Architecture embarrassingly parallel and designed for mostly lock free scaling 
across high HW thread count

● Heavy use of RCU locking paradigm and TLS
● Design for containerized world
● Extensibility is key

Cloud native 
summary



Q&A

● Thanks for coming! Questions welcome on Twitter: @mattklein123
● We are super excited about building a community around Envoy. Talk to us if 

you need help getting started.
● https://www.envoyproxy.io/
● Lyft is hiring!


