
Envoy internals deep dive

Matt Klein / @mattklein123, Software Engineer @Lyft



Agenda

● Envoy design goals
● Architecture overview
● Threading model
● Hot restart
● Stats
● Q&A



What is Envoy?

The network should be transparent to applications. When 
network and application problems do occur it should be easy to 
determine the source of the problem.



Envoy design goals

● Out of process architecture 
● Low latency, high performance, dev productivity 
● L3/L4 filter architecture
● HTTP L7 filter architecture 
● HTTP/2 first
● Service/config discovery 
● Active/passive health checking
● Advanced load balancing
● Best in class observability
● Edge proxy
● Hot restart



Envoy architecture diagram

Connection

Listener 
filters

TCP filter 
manager

TCP Read 
Filters

TCP write 
filters

HTTP conn 
manager

HTTP codec

HTTP read 
filters

HTTP write 
filters

Service 
router

Upstream 
conn pool

Backend 
services

Stats

Admin

Cluster/Listener/Route 
Manager

xDS API

Worker



Envoy threading model (c10k)

Thread

Connection

● Connection per thread does not scale
● Scaling requires many connections per thread: “c10k”
● Requires asynchronous programming paradigms: harder

Thread

Event loop

ConnectionConnectionConnection



Envoy threading model (overview)

Main thread Worker 
thread(s)

Worker 
thread(s)

Worker 
thread(s)

Worker 
thread(s)

Worker 
thread(s)

File flush 
thread(s)

ListenersxDS

Runtime

Stat flush

Admin

Connections

Process 
management

● Main thread handles non-data plane 
misc tasks

● Worker thread(s) embarrassingly 
parallel and handle listeners, 
connections, and proxying

● File flush threads avoid blocking
● Designed to be 100% non-blocking
● Designed to scale to massive 

parallelism (# of HW threads) 



Envoy threading model (RCU)

● RCU = Read-Copy-Update
● Synchronization primitive heavily used in the Linux kernel
● Scales extremely well for R/W locking that is read heavy 

New 
Ref-counted 

Data

ReaderUpdater

Event loop

Ref-counted 
Data

“Quiescent period”Copy



Envoy threading model (TLS and RCU)

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

Worker 1

Worker 2

Worker 3

Worker 4

Main

Event loop post()

“Slots”

TLS get()

● TLS = Thread Local Storage
● TLS slots can be allocated dynamically by objects
● RCU is used to post shared read-only data from the main thread to workers



Envoy threading model (cluster updates example)

Cluster 
manager

(1)

Worker event 
loop
(4)

IO event / load 
balancer

(7)

Post handler / 
TLS update

(5)

Health checker
(2)

xDS/DNS
(3)

TLS
(6)

Main Worker

● Complete example of TLS and RCU for cluster updates



Envoy hot restart (overview)

Load balancer Service AService AService A

Service AService AService A’

33%

67%

Load balancer Service A -> A’

Rolling deploy

Hot restart deploy

Service A -> A’Service A -> A’

● Full binary reload without dropping any connections
● Very useful in legacy/non-container scheduler worlds



Envoy hot restart (mechanics)

Stats

Locks

Shared memory

Stats

Logs

Hot restarter

Primary process

Stats

Logs

Hot restarter

Secondary process

UDS

● Stats/locks kept in shared memory
● Simple RPC protocol over unix 

domain sockets (UDS)
● Sockets, some stats, etc. passed 

between processes
● Built for containers



Envoy stats (overview)

Store

SinkSink

CountersCountersCounters

CountersCountersGauges

CountersCountersHistograms

Flusher

Admin

Sink

● Store: holds stats
● Sink: protocol adapter (statsd, gRPC, etc.)
● Admin: allows pull access
● Flusher: allows push access
● Scope: discrete grouping of stats that can 

be deleted. Critical for dynamic xDS on top 
of hot restart shared memory



Envoy stats (TLS scopes)

1. Store is global
2. Stats first looked up in TLS cache
3. Not found, allocated in central 

cache, added to TLS cache
4. Counters/gauges in shared 

memory
5. Histograms in process memory
6. Scope deletion causes a TLS 

cache flush on all threads

Store (main thread) (1)

Shared memory (4)

Stat entries

Scope central cache (3)

Gauges

Counters

TLS scope cache flush (6)

Histograms

Scope central cacheScope central cache
Scope TLS cache (2)

Gauges

Counters

Histograms

Process memory (5)

Histograms



Envoy stats (TLS histograms)

Parent 
histogram

TLS histogramTLS histogramTLS histogram

TLS histogram

Histogram A

Histogram B

&Current 
histogram

recordValue(...) (1)

Merge 
histogram (2)

TLS post() to swap 
current (3)

TLS post() back to 
continue merge (4)

Merge all 
background 

histograms (5)

(1) TLS histogram values recorded into 
“current” without locks
(2) Period merge/flush
(3) Post to each worker to swap current 
histogram (record now happens on 
alternate)

(4) Post back to main thread to continue 
merge
(5) Merge all TLS histograms without 
locks 



Summary

● Bias for developer productivity without sacrificing high throughput and low 
latency

● Architecture embarrassingly parallel and designed for mostly lock free scaling 
across high HW thread count

● Heavy use of RCU locking paradigm and TLS
● Design for containerized world
● Extensibility is key

Cloud native 
summary



Q&A

● Thanks for coming! Questions welcome on Twitter: @mattklein123
● We are super excited about building a community around Envoy. Talk to us if 

you need help getting started.
● https://www.envoyproxy.io/
● Lyft is hiring!


