
Deploying SQL Stream Processing in
Kubernetes with Ease

Andrew Stevenson
CTO Landoop
Big Data
Fast Data
Financial Markets
andrew@landoop.com

Antonios Chalkiopoulos
CEO Landoop
Big Data
Fast Data
Author
antonios@landoop.com

www.landoop.com @LandoopLtd

mailto:andrew@landoop.com
mailto:antonios@landoop.com
http://www.landoop.com/
mailto:@LandoopLtd

From basic data containers like JSON

{
customer: {

name: “nameA”,
address: “”

To modern data containers like Apache Avro

Performant binary format

Data contract

Type and pipeline safety

Data evolution

Metadata for Privacy / Regulations

SQL Makes Sense!

1 To query data

SELECT * FROM .. WHERE customer.country=‘CA’

SQL Makes Sense!

2 To build data integrations

UPSERT INTO elasticSearchIndex
SELECT MMSI AS vessel_id, location FROM position_reports
PK MMSI

SQL Makes Sense!

3 To operating streaming pipelines
INSERT INTO …
SELECT STREAM

COUNT(*) AS total
FROM payments
GROUP BY TUMBLE(1, m)

And when everything is stateless (nearly)

E T L
Incoming data Stream & Process Store Data

And when everything is a config

You can drive your CI/CD and store everything in

We want to be operating streaming pipelines

And how about my state ?

We need a distributed and parallel file-system

Who we are

Industrial grade streaming platform for Apache Kafka

Data Pipelines

E T L

Getting data in

• Streaming data integration made
easy with Kafka Connect

• 30 + Connectors, open source

• Dockers and Helm charts

• SQL support, Kafka Connect Query
Language => KCQL

{ "sensor_id": "01" , "temperature": 52.7943, "ts": 1484648810 }
{ "sensor_id": "02" , "temperature": 28.8597, "ts": 1484648810 }

INSERT INTO sensor_ringbuffer
SELECT sensor_id, temperature, ts
FROM coap_sensor
WITHFORMAT JSON
STOREAS RING_BUFFER

INSERT INTO sensor_reliabletopic
SELECT sensor_id, temperature, ts
FROM coap_sensor
WITHFORMAT AVRO
STOREAS RELIABLE_TOPIC

KCQL

Connectors

kafka-connect-blockchain
kafka-connect-bloomberg
kafka-connect-cassandra
kafka-connect-coap
kafka-connect-druid
kafka-connect-elastic
kafka-connect-ftp
kafka-connect-hazelcast
kafka-connect-hbase

kafka-connect-influxdb
kafka-connect-jms
kafka-connect-kudu
kafka-connect-mongodb
kafka-connect-mqtt
kafka-connect-redis
kafka-connect-rethink
kafka-connect-voltdb
Kafka-connect-pulsar

https://github.com/Landoop/stream-reactor https://github.com/Landoop/kafka-helm-charts

https://github.com/Landoop/stream-reactor
https://github.com/Landoop/kafka-helm-charts

Stream Reactor in Kubernetes

Workers are JVM apps (same group.id)

Kafka sees them as a consumer group,
consuming from the same config topics

Workers listen to config topics and spin
tasks/threads when told

Tasks are new consumer groups (sink) on
data topics

Stream Reactor in K8. The good

• K8s ensures our desired number of workers is applied

• State is persisted in Apache Kafka

• Easy to deploy and scale

Stream Reactor in K8. The not so good

Rebalancing on:
• New worker/pod
• Removal of worker/pod
• Adding a new connector

Connect rebalances vs K8 maintaining desired state:

Too Many Rebalances

Advice:
• Liveliness probes
• Task failed/Connect worker

• 1 Connector per deployment

Stream processing with SQL in
Kubernetes made easy

Rest & WebSocket

Lenses SQL on Kafka Streams

Clients

React/Redux

Scala/Java

Python

Golang

Execution Modes

Lenses
KStreams
Threads

Kafka Connect Task
KStreams
Threads

Kubernetes Pod
KStreams
Threads

In process mode

Scale out modes

Kubernetes Modes

Kubernetes Manifest, important bit

resources:
{{ toYaml .Values.resources | indent 10 }}

env:
- name: SQL
value: |-

SET autocreate=true;

INSERT INTO fastVehiclesProcessor
SELECT MMSI, Speed, Longitude AS Long, Latitude AS Lat, `Timestamp`
FROM iot_data
WHERE Speed > 10
AND _ktype=AVRO AND _vtype=AVRO

Config is Code => SQL is Config

SQL Processors in Kubernetes

• Kafka rebalances the data streams for us
• Kubernetes ensures our desired number of consumers is applied
• Config is code
• Prebuilt docker chassis with monitoring included
• SQL is code, configure runner via environment variables

• State?
• Yes, aggregating, joining, backed up to Apache Kafka

• If possible use StatefulSets
• KStreams will bootstrap itself from the rocksdb on disk speeding recovery

times

Deploying SQL Processors

Lenses gives you:

• Auditing
• Security polices on Apache Kafka
• Topic white/black listing
• Quota management
• Visualise topologies and export topologies
• Websocket, rest and JDBC
• Monitoring + Prometheus
• Alerts with Alert Manager

Lenses SQL Processing in Kubernetes

Quick Demo

Questions?

