
Continuous Delivery 
Meets Custom 
Kubernetes Controller
A Declarative Configuration Approach to 

CI/CD
By:

- Simon Cochrane
- Suneeta Mall



Kubernetes specifically states that it

“Does not deploy source code and does not build your application. Continuous 
Integration, Delivery, and Deployment (CI/CD) workflows are determined by 

organization cultures and preferences as well as technical requirements.”

CI/CD on Kubernetes



•Recommended not to use the :latest tag

Configuration files



• Specify a version number (digest or git hash)
• Should be in source control
•How to manage multiple environments?

Configuration files



Set of workflows and validations that provide a reliable process for releasing software.

Continuous Delivery



e.g. Jenkins, TeamCity

Self-hosted CD



E.g. Circle CI, Shippable,

AWS CodePipeline

Managed CD



Existing Solutions?



•Git is the source of truth for application configuration

•Lots of version changes can be noisy

•Especially when rest of the configuration rarely changes

•Should application releases be treated differently to configuration?

•Continuous Deployments should be common events

•Configuration changes are comparatively rare

•Still need to deal with history and roll back 

Configuration



A simplified approach to Continuous Delivery

• BYO continuous integration tool
• Minimise infrastructure setup and management costs
• Build on existing Kubernetes concepts
• Support manual steps and full automation
• Support best practices
• Blue-green deployments
• Version history and rollback
• Secure environments
• Instrumentation/visibility

CD-lite



Simpler Pipeline



Solve these challenges by using intrinsic kubernetes principles and native abstractions

CD-lite: Container Version Manager



•Clusters and tools don’t need access to additional resources
•e.g. don’t need git read or write access

•Doesn’t require a separate config repo and config update process

•Simplified configuration
•Can exist alongside the application code
•Avoid configuration per-environment
•Reduces noise in configuration version history

Advantages



• Low management and maintenance requirements
•Onus of CD pipeline maintenance is on Kubernetes

• Separation of concerns
•Cluster is responsible for managing its own versions

• Eliminates security risk by centralizing communication to CR
• Native solution 
• Better visibility into CI/CD
•Current release
•Release history

• Monitoring CI/CD:
•Dashboard and metrics 

Benefits



Demo



Thank you!


