
CONTINUOUS DELIVERY
MEETS CUSTOM
KUBERNETES
CONTROLLER.
A DECLARATIVE CONFIGURATION APPROACH TO
CI/CD

Presenters:
Simon Cochrane, Director of Engineering (API)
Suneeta Mall, Software Engineer

INSERT TEXT HERE

NEARMAP ENVIRONMENTS.

NEARMAP ENVIRONMENTS.

Kubernetes specifically states that it

“Does not deploy source code and does not build your application. Continuous
Integration, Delivery, and Deployment (CI/CD) workflows are determined by

organization cultures and preferences as well as technical requirements.”

CI/CD ON KUBERNETES.

• Recommended not to use the :latest tag

CONFIGURATION FILES.

• Specify a version number
(digest or git hash)

• Should be in source control
• How to manage multiple environments?

CONFIGURATION FILES.

Set of workflows and validations that provide a reliable process for releasing software.

CONTINUOUS DELIVERY.

Set of workflows and validations that provide a reliable process for releasing software.

CONTINUOUS DELIVERY.

e.g. Jenkins, TeamCity

SELF-HOSTED CD.

E.g. Circle CI, Shippable,

AWS CodePipeline

MANAGED CD.

EXISTING SOLUTIONS?

CONCLUSION:

Best used during
development cycle
for fast feedback
loops. Once
development is
complete, another
CI/CD tool should
take over.

SKAFFOLD

HELM.

CONCLUSION:

Use when
distributing
software to
other parties.

SPINNAKER.

CONCLUSION:

Use if you have
specialised
deployment
requirements

WEAVE FLUX.

CONCLUSION:

Use if Gitops
approach is
important to
you, or you are
invested in the
Weave Cloud
platform.

• Source of truth for application configuration

• Version numbers?
• When releasing frequently?

• History and rollback

CONFIGURATION IN GIT?

WHAT’S NEXT?

A simplified approach to Continuous Delivery

• BYO continuous integration tool
• No additional infrastructure
• Build on existing Kubernetes concepts
• Support full automation
• Support best practices
• Secure environments
• Blue-green deployments
• Version history and rollback
• Instrumentation/visibility

CD-LITE.

SIMPLER PIPELINE.

• Don’t need access to additional resources
• e.g. don’t need git access

• Doesn’t require a separate config repo

• Simplified configuration
• Exists alongside application code

• Easy to setup and manage

ADVANTAGES.

Solve these challenges by using intrinsic Kubernetes principles and native abstractions

CD-LITE: CONTAINER VERSION MANAGER.

CONTAINER VERSION DECLARATION.

Defines rules for managing container versions

• CV Controller
• CR Syncer
• CI Tools

ARCHITECTURE.

ROLE: Reacts to changes
in CV resources

CV CONTROLLER.

ROLE: Reacts to changes in CV resources

CV CONTROLLER.

CV CONTROLLER.

ROLE: Reacts to changes in CV resources

• Creates and updates CR Syncers

CV CONTROLLER.

ROLE: Reacts to changes in CV
resources

• Creates and updates CR
Syncer per CV resources

• Provide visibility on version
updates

ROLE: To ensure
container state, as
declared by the CV
resource, is met.

CR SYNCERS.

Periodically syncs with registry to check for changes in desired container version

CR SYNCERS.

• Regression check
• Quality checks
• Container vulnerability scan
• Image signature

CR SYNCER: VALIDATION

• Patches PodSpec of matched workload to
trigger the rollout
• StrategicMerge

• Using native strategy
• RollingUpdate
• Recreate
• OnDelete

CR SYNCER: ROLLOUTS

• Using non-native strategy
•Canary
•Blue Green deploys

• May requires manual intervention
• WIP to allow automatic blue green rollouts

CR SYNCER: COMPLEX ROLLOUTS

CANARY DEPLOYMENT.

tag: blue tag: green

BLUE GREEN NAMESPACE DEPLOYMENT.

BLUE GREEN SERVICE DEPLOYMENT.

• Roll-forward is encouraged
• Proportional scaling

• Optional rollback

• Failed deployment triggers event/notification

CR SYNCER: ROLLBACK

CR SYNCERS.

CI TOOLS.

CI TOOLS.

Build

Tests

Push to
Registry

System/UAT
Tests

Deploy

docker run nearmap/cvmanager cr tags add \
--repo $REPO \
--tags $TAG \
--version $VERSION

EASE OF USE.

• One time install only
• In 3 easy steps

1. Install CVManager
2. Define CV resource for workload
3. Integrate with CI

1 2 3

“Self managed self healing CI/CD pipeline”

BENEFITS OF CVM.

BENEFITS OF CVM.

VISIBILITY: CURRENT VERSION

• Opt-in

• Captured in configmap

• Exposed on REST

VISIBILITY: RELEASE HISTORY

• Captures stats
• Success
• Failure
• Registry
• Bad config
• Container not found
• Rollback

• Supports event notification and service check

MONITORING.

DEPLOYMENT DASHBOARD.

https://xkcd.com/815/

RESOURCE UTILIZATION.

Will this approach scale to demand?
CPU ≅ 0.001 Core
Memory ≅ 10 MiB

• Merge to master initiates deployments

• Use git hashes as version numbers

• Deployment Dashboard

• Automate tests

CVM BEST PRACTICES.

SIMPLE ENOUGH.

That CV-Manager updates itself

DEMO

CVManager is open-source, available under MIT license
https://github.com/nearmap/cvmanager/

Blog
https://nearmap.io/2018/04/cvmanager-intro/

Sample application
https://github.com/nearmap/cvm-example

https://github.com/nearmap/cvmanager/
https://nearmap.io/2018/04/cvmanager-intro/
https://github.com/nearmap/cvm-example

THANK YOU!

Questions?

