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Grafeas

A CI/CD Artifact 
Metadata Storage And 
Signing For Cloud 
Applications

in-toto

A Framework To 
Provide Integrity And 
Authenticity Of All The 
Steps Performed To 
Make Software



How Is Software Made?



A Stylized Software Supply Chain
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containerize



Attackers Can Hack The Software Supply Chain
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How Can We Fix This?



Many Good Point Solutions
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Many Good Point Solutions

code build

test

build containerize

→ git signing,
reference state log [Torres USENIX Sec 16], ...

→ TPMs, HSMs, reproducible builds, ...

→ TLS, GPG, Content Trust



Fixed?



Gaps Between Steps? Compliance?

code build

test

build containerize



We Want To Secure The 
Complete
Software Supply Chain!
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→ Verifiably define the steps of the software supply chain

→ Verifiably define the authorized actors

→ Guarantee that everything happens according to definition, and nothing else



in-toto -- Project Definition -- Steps

{
  "_type": "layout",
  "expires":"2017-08-31T12:44:15Z",
  "keys": {
    "0c6c50": { ... }
  },
  "signatures": [...],
  "steps": [{
    "_type": "step",
    "name": "checkout-code",
    "expected_command": ["git", "clone", "..."],
    "expected_materials": [],
    "expected_products": [
      ["CREATE", "demo-project/foo.py"], ...],
    "pubkeys": ["0c6c50..."],
    "threshold": 1
    }, ...],
  "inspections": [...]
}
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in-toto -- Project Definition -- Functionaries

{
  "_type": "layout",
  "expires":"2017-08-31T12:44:15Z",
  "keys": {
    "0c6c50": { ... }
  },
  "signatures": [...],
  "steps": [{
    "_type": "step",
    "name": "checkout-code",
    "expected_command": ["git", "clone", "..."],
    "expected_materials": [],
    "expected_products": [
      ["CREATE", "demo-project/foo.py"], ...],
    "pubkeys": ["0c6c50..."],
    "threshold": 1
    }, ...],
  "inspections": [...]
}
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in-toto -- Project Definition -- Materials/Products

{
  "_type": "layout",
  "expires":"2017-08-31T12:44:15Z",
  "keys": {
    "0c6c50": { ... }
  },
  "signatures": [...],
  "steps": [{
    "_type": "step",
    "name": "checkout-code",
    "expected_command": ["git", "clone", "..."],
    "expected_materials": [],
    "expected_products": [
      ["CREATE", "demo-project/foo.py"], ...],
    "pubkeys": ["0c6c50..."],
    "threshold": 1
    }, ...],
  "inspections": [...]
}
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in-toto -- Project Definition -- Rules

{
  "_type": "layout",
  "expires":"2017-08-31T12:44:15Z",
  "keys": {
    "0c6c50": { ... }
  },
  "signatures": [...],
  "steps": [{
    "_type": "step",
    "name": "checkout-code",
    "expected_command": ["git", "clone", "..."],
    "expected_materials": [],
    "expected_products": [
      ["CREATE", "demo-project/foo.py"], ...],
    "pubkeys": ["0c6c50..."],
    "threshold": 1
    }, ...],
  "inspections": [...]
}
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in-toto -- Project Definition -- Signed

{
  "_type": "layout",
  "expires":"2017-08-31T12:44:15Z",
  "keys": {
    "0c6c50": { ... }
  },
  "signatures": [...],
  "steps": [{
    "_type": "step",
    "name": "checkout-code",
    "expected_command": ["git", "clone", "..."],
    "expected_materials": [],
    "expected_products": [
      ["CREATE", "demo-project/foo.py"], ...],
    "pubkeys": ["0c6c50..."],
    "threshold": 1
    }, ...],
  "inspections": [...]
}
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in-toto -- Signed Evidence For Each Step

{
  "_type": "Link",
  "name": "code",
  "byproducts": 
{"stderr": "", "stdout": 
"",
"return_value": 0
},
  "command": [...],
  "materials": {},
  "products": {
    "foo": {"sha256": 
"..."}},
  "signatures": [...]
}

{
  "_type": "Link",
  "name": "test",
  "byproducts": 
{"stderr": "", "stdout": 
"",
"return_value": 0
},
  "command": [...],
  "materials": {...},
  "products": {
    "foo": {"sha256": 
"..."}},
  "signatures": [...]
}

{
  "_type": "Link",
  "name": "build",
  "byproducts": 
{"stderr": "", "stdout": 
"",
"return_value": 0
},
  "command": [...],
  "materials": {},
  "products": {
    "foo": {"sha256": 
"..."}},
  "signatures": [...]
}

{
  "_type": "Link",
  "name": "container",
  "byproducts": 
{"stderr": "", "stdout": 
"",
"return_value": 0
},
  "command": [...],
  "materials": {},
  "products": {
    "in-toto/.git/HEAD": 
{"sha256": "..."}},
  "signatures": [...]
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$ in-toto-run [opts] -- ./do-the-supply-chain-step



So much metadata, what do we 
do?



Grafeas Motivation

DeployOperate
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Deploy
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Artifact metadata flow

...



Grafeas API

Notes
● Context-insensitive metadata in a provider’s project

Occurrences
● Links to a provider’s note
● Binds a note to a resource  in a user’s  project

tl;dr A structured metadata API 
for annotating cloud components
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Grafeas Resources



Package | Vulnerabilities | Discovery | Builds | Image | Attestation | Deployment

● Which packages are installed?

Grafeas API: Vulnerabilities

● Which packages have known vulnerabilities?

Grafeas API: Discovery
● What type of analysis is ongoing or has happened for this resource?

Grafeas API: Package



Package | Vulnerabilities | Discovery | Builds | Image | Attestation | Deployment

Grafeas API: Builds

● What source was this built from?
● Who built it?
● What builder was used?

Grafeas API: Image
● Which base image was used for this container?



Grafeas API: Attestation

● Have policy requirements been met?
○ Has QA team signed off?
○ Do I approve of the way this image was built?
○ Is this resource free of exploitable Vulnerabilities?
○ Endless possibilities...

Package | Vulnerabilities | Discovery | Builds | Image | Attestation | Deployment



Grafeas API: Deployment History

● When was this deployed? 
● By whom?
● Where?
● Cross check production against new vulnerability information

Package | Vulnerabilities | Discovery | Builds | Image | Attestation | Deployment



Query Data
From Grafeas
To Control
Your 
Deployment

Publish in-toto
Verification 
Results To 
Grafeas Server



in-toto Verification Result As Grafeas Attestation

Link

Layout
Link

Link

Link

Supply 
Chain

Attestation

publish in-toto 
verification 
result

Grafeas Server

in-toto Supply Chain Metadata
Admission Controller

Container Cluster

admit based 
on Grafeas 
Attestation



Thank You!
Grafeas.io

github.com/Grafeas
grafeas-users@googlegroups.com
grafeas-dev@googlegroups.com

github.com/kelseyhightower/grafeas-tutorial

in-toto.io

github.com/in-toto

jcappos@nyu.edu

Questions?

mailto:grafeas-users@googlegroups.com
mailto:grafeas-dev@googlegroups.com

