
Grafeas and in-toto
Completely Securing The Software Supply Chain 

Wendy Dembowski Lukas Pühringer



Grafeas

A CI/CD Artifact 
Metadata Storage And 
Signing For Cloud 
Applications

in-toto

A Framework To 
Provide Integrity And 
Authenticity Of All The 
Steps Performed To 
Make Software



How Is Software Made?



A Stylized Software Supply Chain

code build

test

containerize



Attackers Can Hack The Software Supply Chain

code build

test

build containerize



How Can We Fix This?



Many Good Point Solutions

code build

test

build containerize



Many Good Point Solutions

code build

test

build containerize

→ git signing,
reference state log [Torres USENIX Sec 16], ...



Many Good Point Solutions

code build

test

build containerize

→ git signing,
reference state log [Torres USENIX Sec 16], ...

→ TPMs, HSMs, reproducible builds, ...



Many Good Point Solutions

code build

test

build containerize

→ git signing,
reference state log [Torres USENIX Sec 16], ...

→ TPMs, HSMs, reproducible builds, ...

→ TLS, GPG, Content Trust



Fixed?



Gaps Between Steps? Compliance?

code build

test

build containerize



We Want To Secure The 
Complete
Software Supply Chain!

13

→ Verifiably define the steps of the software supply chain

→ Verifiably define the authorized actors

→ Guarantee that everything happens according to definition, and nothing else



in-toto -- Project Definition -- Steps

{
  "_type": "layout",
  "expires":"2017-08-31T12:44:15Z",
  "keys": {
    "0c6c50": { ... }
  },
  "signatures": [...],
  "steps": [{
    "_type": "step",
    "name": "checkout-code",
    "expected_command": ["git", "clone", "..."],
    "expected_materials": [],
    "expected_products": [
      ["CREATE", "demo-project/foo.py"], ...],
    "pubkeys": ["0c6c50..."],
    "threshold": 1
    }, ...],
  "inspections": [...]
}

14



in-toto -- Project Definition -- Functionaries

{
  "_type": "layout",
  "expires":"2017-08-31T12:44:15Z",
  "keys": {
    "0c6c50": { ... }
  },
  "signatures": [...],
  "steps": [{
    "_type": "step",
    "name": "checkout-code",
    "expected_command": ["git", "clone", "..."],
    "expected_materials": [],
    "expected_products": [
      ["CREATE", "demo-project/foo.py"], ...],
    "pubkeys": ["0c6c50..."],
    "threshold": 1
    }, ...],
  "inspections": [...]
}

15

Bob

Dave

Erin

Carol



in-toto -- Project Definition -- Materials/Products

{
  "_type": "layout",
  "expires":"2017-08-31T12:44:15Z",
  "keys": {
    "0c6c50": { ... }
  },
  "signatures": [...],
  "steps": [{
    "_type": "step",
    "name": "checkout-code",
    "expected_command": ["git", "clone", "..."],
    "expected_materials": [],
    "expected_products": [
      ["CREATE", "demo-project/foo.py"], ...],
    "pubkeys": ["0c6c50..."],
    "threshold": 1
    }, ...],
  "inspections": [...]
}

16

Bob

Dave

Erin

Carol



in-toto -- Project Definition -- Rules

{
  "_type": "layout",
  "expires":"2017-08-31T12:44:15Z",
  "keys": {
    "0c6c50": { ... }
  },
  "signatures": [...],
  "steps": [{
    "_type": "step",
    "name": "checkout-code",
    "expected_command": ["git", "clone", "..."],
    "expected_materials": [],
    "expected_products": [
      ["CREATE", "demo-project/foo.py"], ...],
    "pubkeys": ["0c6c50..."],
    "threshold": 1
    }, ...],
  "inspections": [...]
}

17

Bob

Carol

Dave

Erin



in-toto -- Project Definition -- Signed

{
  "_type": "layout",
  "expires":"2017-08-31T12:44:15Z",
  "keys": {
    "0c6c50": { ... }
  },
  "signatures": [...],
  "steps": [{
    "_type": "step",
    "name": "checkout-code",
    "expected_command": ["git", "clone", "..."],
    "expected_materials": [],
    "expected_products": [
      ["CREATE", "demo-project/foo.py"], ...],
    "pubkeys": ["0c6c50..."],
    "threshold": 1
    }, ...],
  "inspections": [...]
}

18

Bob

Carol

Dave

Erin

Alice



in-toto -- Signed Evidence For Each Step

{
  "_type": "Link",
  "name": "code",
  "byproducts": 
{"stderr": "", "stdout": 
"",
"return_value": 0
},
  "command": [...],
  "materials": {},
  "products": {
    "foo": {"sha256": 
"..."}},
  "signatures": [...]
}

{
  "_type": "Link",
  "name": "test",
  "byproducts": 
{"stderr": "", "stdout": 
"",
"return_value": 0
},
  "command": [...],
  "materials": {...},
  "products": {
    "foo": {"sha256": 
"..."}},
  "signatures": [...]
}

{
  "_type": "Link",
  "name": "build",
  "byproducts": 
{"stderr": "", "stdout": 
"",
"return_value": 0
},
  "command": [...],
  "materials": {},
  "products": {
    "foo": {"sha256": 
"..."}},
  "signatures": [...]
}

{
  "_type": "Link",
  "name": "container",
  "byproducts": 
{"stderr": "", "stdout": 
"",
"return_value": 0
},
  "command": [...],
  "materials": {},
  "products": {
    "in-toto/.git/HEAD": 
{"sha256": "..."}},
  "signatures": [...]
} 19

$ in-toto-run [opts] -- ./do-the-supply-chain-step



So much metadata, what do we 
do?



Grafeas Motivation

DeployOperate

Kubernetes

Engine

  App 

  Engine

On-premises 
cluster 

Build TestCode 

Grafeas

Deploy

Scanner

Operate

Legend

Primary development pipeline

Artifact metadata flow

...



Grafeas API

Notes
● Context-insensitive metadata in a provider’s project

Occurrences
● Links to a provider’s note
● Binds a note to a resource  in a user’s  project

tl;dr A structured metadata API 
for annotating cloud components



Metadata
Provider A

Metadata
Provider B

Metadata
Provider C

Note
  name
  kind
  shortMsg
  longMsg
  details
  

Note
  name
  kind
  shortMsg
  longMsg
  details

Note
  name
  kind
  shortMsg
  longMsg
  details

Finding
  
resource
_url
  result

Finding
  
resource
_url
  result

User Projects

Occurrence
 resource_url
 note_name
 ...

Occurrence
 resource_url
 note_name
 ...

Grafeas Resources



Package | Vulnerabilities | Discovery | Builds | Image | Attestation | Deployment

● Which packages are installed?

Grafeas API: Vulnerabilities

● Which packages have known vulnerabilities?

Grafeas API: Discovery
● What type of analysis is ongoing or has happened for this resource?

Grafeas API: Package



Package | Vulnerabilities | Discovery | Builds | Image | Attestation | Deployment

Grafeas API: Builds

● What source was this built from?
● Who built it?
● What builder was used?

Grafeas API: Image
● Which base image was used for this container?



Grafeas API: Attestation

● Have policy requirements been met?
○ Has QA team signed off?
○ Do I approve of the way this image was built?
○ Is this resource free of exploitable Vulnerabilities?
○ Endless possibilities...

Package | Vulnerabilities | Discovery | Builds | Image | Attestation | Deployment



Grafeas API: Deployment History

● When was this deployed? 
● By whom?
● Where?
● Cross check production against new vulnerability information

Package | Vulnerabilities | Discovery | Builds | Image | Attestation | Deployment



Query Data
From Grafeas
To Control
Your 
Deployment

Publish in-toto
Verification 
Results To 
Grafeas Server



in-toto Verification Result As Grafeas Attestation

Link

Layout
Link

Link

Link

Supply 
Chain

Attestation

publish in-toto 
verification 
result

Grafeas Server

in-toto Supply Chain Metadata
Admission Controller

Container Cluster

admit based 
on Grafeas 
Attestation



Thank You!
Grafeas.io

github.com/Grafeas
grafeas-users@googlegroups.com
grafeas-dev@googlegroups.com

github.com/kelseyhightower/grafeas-tutorial

in-toto.io

github.com/in-toto

jcappos@nyu.edu

Questions?

mailto:grafeas-users@googlegroups.com
mailto:grafeas-dev@googlegroups.com

