
Cloud Native Identity
Management

Andreas Zitzelsberger, QAware
Andrew Jessup, Scytale.io

Once upon a time...

Large cloud project for a major
company

• Hundreds of apps in the
cloud

• Many more on-prem
• Little centralized control
• Strict legal requirements
• Strict security requirements

The Good, the Bad and the Ugly of Migrating Hundreds of Legacy
Applications to Kubernetes, Josef Adersberger, KubeCon 2017
https://bit.ly/2JZNRHw

https://bit.ly/2JZNRHw

Where did we start?

• Classic approach:
0-trust with TLS / X.509

• Secure
• But: Decomposition of

applications leads to an
explosion of trust relations
• Hard to manage at scale
• Complex and error-prone

• Also, no secret rotation

Let’s take a step back and look at
the problem...

App A App B

Id(A)
Trust(A) = {...}

Id(B)
Trust(B) = {Id(A)}

● Secure Authentication and
Authorization

● Scale
● Dynamicity
● Manageability
● Secret rotation
● Interoperability
● Hybrid cloud

GlueCon 2016
Joe Beda proposes SPIFFE

KubeCon NA 2017
SPIFFE & SPIRE 0.1 are released

April 2018
SPIFFE & SPIRE

accepted into the CNCF

Circa 2005
Google develops the Low Overhead

Authentication Service

11th USENIX Security Symposium (2002)
Plan9 security design published

SPIFFE Workload API

Workload

“Who am I?”

“You are
spiffe://acme.com/fe

And here is your short-lived
key to prove it to others.”

SPIRE

Workload Attestor Plug-ins Node Attestor Plug-ins

Workload API

Secure Introduction to other services

mTLS JWTs

Identity for proxy services

Linux

Windows

OS X

YubiKey

HSM providersAzure

GCP

Kubernetes

Mesosphere Join Token

AWS Kerberos

Simplify deployment of
distributed systems

Co
re

W
or

kl
oa

d
Pl

at
fo

rm

gRPC

Building on top of
SPIFFE and SPIRE

SPIRE provides identity,
Vault trust

App

Identity

Trust

spiffe://trust-domain/app
Trusted CAs: ...

+ Rotating credentials for Databases, RabbitMQ, …
+ Secrets

spiffe://.../app-1 -> spiffe://.../app-2
spiffe://.../app-1 -> spiffe://.../app-3
spiffe://.../app-2 -> spiffe://.../app-3
...

Trusted
CAs

Proper secret rotation is
surprisingly hard

• Assumption: Keys and certificates are (a) static and (b)
provided via files

• Python (with Flask)
app.run(ssl_context=('cert.pem', 'key.pem'))

• Go (GRPC with TLS)
credentials.NewServerTLSFromFile(crt, key)

• Also Envoy, Nginx, …
• Java

-Djavax.net.ssl.trustStore=... -Djavax.net.ssl.keyStore=...
• But Java has the java.security API
• Certificates and keys can be rotated online (if the API is used

properly)

Integrating Vault and SPIRE

Transport (TLS) Authentication
• Unfriendly to certificate

rotation due to unseal
process

• Solution: Put Vault
alongside SPIRE in the
same PKI

App Authentication
• Previously unable to validate

URI SANs because Go up to
1.9 lacked support

• Works from Vault 0.10.2 on
(PR #4231)

• Solution: Sidecar regularly
updates the trusted auth
certificate with the SPIRE CA

TLS

App

CloudId Lib

Java

SPIRE Agent

java.security

Workload API

Vault

Piecing it all together

TLS

● SVID as Server
Certificate

● Client cryptographically
checked against trusted
bundles

● Client Ids checked
against ACL

● SVID as Client Certificate
● Servers cryptographically

checked against trusted
bundles

● Server Ids checked
against ACL

Integration at application level.
Alternative: Use an ambassador proxy
See https://github.com/spiffe/spiffe-example
for examples with Envoy and Ghosttunnel

https://github.com/spiffe/spiffe-example

https://github.com/qaware/cloudid-showcase Demo time

https://github.com/qaware/cloudid-showcase

Our next steps...

Further exploration

• Use the SPIFFE Id for tracing and correlating logs
• Interaction with other service meshes
• Connect workload and user identities
• Federation and hybrid cloud

SPIRE Server SPIRE Server
Peering

Cloud Region 1 Cloud Region 2

Summary

There’s a lot of infrastructure...

… exposed with a single line of
code.

The configuration effort is reduced to
the actual business problem

● Specify who is who
● Specify who is allowed to talk to

whom

spiffe.io | github.com/spiffe | slack.spiffe.io

May 2 (Today) May 3 (Tomorrow) May 4 (Friday)

TheNewStack Pancake Breakfast
talks SPIFFE 7.30am

SPIFFE Project Intro 4.25pm SPIFFE Deep Dive
(Scytale) 2pm

Panel: App Security Requires
Containers 4.25pm

Thank You!

@andreasz82

Andreas Zitzelsberger

@whenfalse

Andrew Jessup

Special thanks to
Christian Fritz QAware
Roman Buchholz QAware
Evan Gilman Syctale.io
Nic Jackson Hashicorp

