
Mateo Burillo, Integrations Engineer. 05-18

Building a
Kubernetes Scheduler
using Custom Metrics

Building a Kubernetes Scheduler
using Custom Metrics

1 - INTRO TO KUBERNETES POD SCHEDULING
● Schedulers and scalers
● Birth of a pod, the scheduler role
● Fine-tuning the Kubernetes scheduler
● Hard and soft decision constraints

2 - CREATE YOUR KUBERNETES CUSTOM SCHEDULER
● Multiple schedulers and schedulerName selectors

● Main loop and relevant code sections

3 - CODE OVERVIEW AND DEMO
4 - IMPLEMENTED & PROPOSED IMPROVEMENTS

● Metrics cache
● Failsafe code
● Adding constraints and variables

5 - FAILSAFE CODE DEMO
6 - Q&A

This talk is not about

The Container Intelligence Platform for Kubernetes
And the usual suspects (Prometheus, Docker Swarm, OpenShift, Mesos…)

● Monitoring & Alerts
● Run-time security for containers & microservices
● Troubleshooting & Forensics

Try this at home: https://sysdig.com/sign-up/

Schedulers, Scalers ...

This talk is not about

● Kubernetes Horizontal Pod Autoscaler or HPA: Updates the number of pods
required in a deployment (scale up / scale down) in response to a metric & threshold
value.

https://sysdig.com/blog/kubernetes-scaler/

● Vertical scalers: automatically scales the resource limit definition
(MutatingAdmissionWebhooks).

● Node scalers: Mostly cloud vendor dependant.

Schedulers, Scalers ...

This talk is about

● Kubernetes Scheduler: Assigns newly created pods to Kubernetes
nodes. You can also use custom metrics to configure your Kubernetes
scheduler.

The scheduler watches Kubernetes API, performs iterative steps to
converge: Current cluster state -> Declarative cluster model.

Birth of a pod

Source: Joe Beda’s blog
https://blog.heptio.com/core-kubernetes-jazz-improv-over-orchestration-a7903ea92ca

AFTER:

● API AUTH
● ADMISSION CONTROLLERS
● ETCD

BEFORE:

● KUBELET PULLS & RUNS THE
IMAGE

Zooming in - The scheduler job

1 - Watch for pods that:
● Are in PENDING phase
● Have no NodeName assigned
● Are explicitly requesting our scheduler

(default otherwise)

2 - Node selection algorithm

3 - Post Pod <-> Node binding to the API Server

4 - Profit!

Scheduler - Basic Behaviour

● Filter
○ Node can fulfil pod resource requests
○ Requested data volumes locally mounted
○ Nodes discarded by selectors / taints / etc

● Rank
○ LeastRequestedPriority (Resource exhaustion)
○ CalculateNodeLabelPriority (Explicitly declared

affinities)
○ CalculateSpreadPriority (Favor spreading pods of the

same service over different nodes)

It will spread and balance as evenly as possible

Scheduling - Hard constraints

● Taints:
○ Applied to nodes
○ Key, Value and Effect

■ NoSchedule: Master node(s) usually have something like:
● node-role.kubernetes.io/master=true:NoSchedule

■ NoExecute: Pod eviction
○ Pods can tolerate these taints (i.e. DaemonSets)

● nodeSelector
○ Explicit requisites inside the pod declaration

Scheduling - Soft constraints

● PreferNoSchedule effect: Soft version of ‘NoSchedule’
○ Dedicated hardware, master nodes, etc

● nodeAffinity (beta feature): Soft version of the nodeSelector
● podAffinity:

■ network distance:
● two components that interchange information

often (latency, bandwidth)
■ performance
■ security

● Special privileged pods VS Sensitive data pods
● Also weight hierarchy!

Scheduling - Affinity Complexity

The affinity / anti
affinity & friends
graph of constraints
is not linear !

Add only important
constraints: there is
a computational
trade-off.

Scheduling - Experimental features

● Pod priority (alpha in 1.10+, present since 1.8+)
○ Preemption: Evict less important pods (if needed) to fit important ones.
○ Scheduling priority (since 1.9) in the queue of Pending pods.
○ Out of resource eviction: If the node starts to run out of resources it will

evict less important pods first.

Scheduling: Experimental features

● TaintBasedEvictions (alpha)
○ NoExecute: Representing node problems dynamically

using taints
○ tolerationSeconds: If your pod has “expensive” local

state and there is a chance of recovery, you can
tolerate the node failure for a while.

Building a Kubernetes Scheduler
using Custom Metrics

1 - INTRO TO KUBERNETES POD SCHEDULING
● Schedulers and scalers
● Birth of a pod, the scheduler role
● Fine-tuning the Kubernetes scheduler
● Hard and soft decision constraints

2 - CREATE YOUR KUBERNETES CUSTOM SCHEDULER
● Multiple schedulers and schedulerName selectors

● Main loop and relevant code sections

3 - CODE OVERVIEW AND DEMO
4 - IMPLEMENTED & PROPOSED IMPROVEMENTS

● Metrics cache
● Failsafe code
● Adding constraints and variables

5 - FAILSAFE CODE DEMO
6 - Q&A

Why custom metrics

● You are limited to hardware constraints:
○ CPU, memory
○ Disk pressure
○ Out of disk, etc

● Or static labeling (Affinity, Taints, etc)

What if you want to schedule your pods based on variable application metrics:

● HTTP requests per second, HTTP latency: Get the pods close to the
consumer

● GPU performance: Currently available FLOPS in the node
● Bottleneck: Overall performance is good (HPA business), but one particular

node is struggling

Custom Kubernetes scheduler

● From 1.6 Kubernetes supports “multiple schedulers”.
○ Don’t worry, you will still have the default one!

Your scheduler can run outside or inside the cluster, living as a
pod that executes the algorithm itself.

● Outside the cluster: Testing, developing
● Pod container scheduler: Cleaner, autocontained

You have the flexibility of running any algorithm you can
implement, including contacting third party APIs for extra data

Pod scheduler - RBAC credentials

The scheduler needs to contact the API and write new Bindings

serviceAccount and RBAC

You will need a new serviceAccount

Bind this serviceAccount with the kube-scheduler clusterrole:
system:kube-scheduler
ClusterRole.v1.rbac.authorization.k8s.io

https://sysdig.com/blog/kubernetes-security-rbac-tls/

Two different“Binding” resources
in the API

● Binding resource (Deprecated in 1.7)
● pods/binding subresource

$ kubectl get clusterrole system:kube-scheduler -o yaml | grep binding
 - bindings
 - pods/binding

Building a Kubernetes Scheduler
using Custom Metrics

1 - INTRO TO KUBERNETES POD SCHEDULING
● Schedulers and scalers
● Birth of a pod, the scheduler role
● Fine-tuning the Kubernetes scheduler
● Hard and soft decision constraints

2 - CREATE YOUR KUBERNETES CUSTOM SCHEDULER
● Multiple schedulers and schedulerName selectors

● Main loop and relevant code sections

3 - CODE OVERVIEW AND DEMO
4 - IMPLEMENTED & PROPOSED IMPROVEMENTS

● Metrics cache
● Failsafe code
● Adding constraints and variables

5 - FAILSAFE CODE DEMO
6 - Q&A

Building a Kubernetes Scheduler
using Custom Metrics

1 - INTRO TO KUBERNETES POD SCHEDULING
● Schedulers and scalers
● Birth of a pod, the scheduler role
● Fine-tuning the Kubernetes scheduler
● Hard and soft decision constraints

2 - CREATE YOUR KUBERNETES CUSTOM SCHEDULER
● Multiple schedulers and schedulerName selectors

● Main loop and relevant code sections

3 - CODE OVERVIEW AND DEMO
4 - IMPLEMENTED & PROPOSED IMPROVEMENTS

● Metrics cache
● Failsafe code
● Adding constraints and variables

5 - FAILSAFE CODE DEMO
6 - Q&A

Creating your own scheduler...

Improvements - Metrics cache

Metrics Cache

● New deployment, you may have 10 identical pods waiting
● Schedulers need to be fast, API calls are expensive
● Implement a cache

○ Timestamp metrics to decide if they are still “fresh”
enough, reuse fresh metrics

○ Adaptive obsolescence time in response to metrics
change rate

Improvements - Failsafe plans

Failsafe mechanisms

● Metrics API is non responsive
○ Cache may mitigate this for a short period of time,

eventually, you have to throw an exception

● No good candidate node
○ Relax requisites?

Improvements - Failsafe plans

Failsafe mechanisms

● Decision timeout
○ Missing the point of optimization
○ Start a timeout clock and catch timeout event

● Multiple exceptions, code has bugs
○ You will always need a plan B, pending forever is not

good

Improvements - Failsafe plans

Failsafe mechanisms

● Delegate to default scheduler (next demo)

● Requeueing: You can return an error condition requesting to get the
Pod back in the queue

Building a Kubernetes Scheduler
using Custom Metrics

1 - INTRO TO KUBERNETES POD SCHEDULING
● Schedulers and scalers
● Birth of a pod, the scheduler role
● Fine-tuning the Kubernetes scheduler
● Hard and soft decision constraints

2 - CREATE YOUR KUBERNETES CUSTOM SCHEDULER
● Multiple schedulers and schedulerName selectors

● Main loop and relevant code sections

3 - CODE OVERVIEW AND DEMO
4 - IMPLEMENTED & PROPOSED IMPROVEMENTS

● Metrics cache
● Failsafe code
● Adding constraints and variables

5 - FAILSAFE CODE DEMO
6 - Q&A

Improvements - Honor constraints

Adding more variables to the mix

● NoSchedule, NotReady, Unreachable, etc labels

● Using hardware pressure as an additional factor

● Software affinities and anti-affinities

Improvements - Modify Pod YAML
“on the fly”
● Modify existing YAML definitions

○ MutatingAdmissionWebhook (beta in 1.9)
■ Istio uses this to inject sidecar containers

○ After auth, before etcd persistence
■ Pod definition is still mutable at this point

Pod scheduler - Improvements V

● Race conditions
○ Lock objects
○ Leader election

Thank You.

Questions?
Mail: mateo.burillo@sysdig.com
Twitter: @mateobur
Want moar K8S stuff?:
https://sysdig.com/newsletters/
Code repo:
https://github.com/draios/kubernetes-scheduler

https://sysdig.com/newsletters/

