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Spoiler Alert

• We wrote a protobuf compiler plugin (framework) to generate 
Spring Web REST controllers that we inject into the application.



Who Are We?

• Workload automation for hybrid cloud assures performance, 
while minimizing cost and maintaining compliance

• Software drives continuous state of health by matching 
workload demand to infrastructure supply

• Technology agnostic: Container Platforms, Virtualization, 
Cloud, etc. 

• Launched in 2010
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Monolith to µServices

• Bigger customers have bigger environments.
• Q: How do we go from managing 10,000 entities to 1,000,000? 
• A: Independently scalable containerized components!
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Communication 1.0

• Pub-sub with protobuf.
• Synchronous calls via Java interfaces hiding Spring REST.

Java	interface	used	by	the	clients.

REST	controller	 in	the	component.



Problems with 1.0

• Developer productivity – Lots of boilerplate code!
• Creating and documenting Java objects to match protobuf objects used 

in pub-sub.
• Manually implementing an RPC-like layer using Java interfaces.

• Performance (speed - make calls faster)
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REST -> gRPC Challenges

• Developer Productivity (again!)
• None of our favourite tools work (cURL, Swagger/OpenAPI).
• No equivalent tools existed in the gRPC ecosystem.

• grpc-gateway was the most promising, but requires a proxy.
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Our Solution

• A protobuf compiler plugin (framework) to generate Spring Web 
REST controllers that we inject into the application context.

Service	definition Generated	controller	(excerpt)
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How It Works

• Read CodeGeneratorRequest proto from stdin.
• For each file:

• Parse protobuf descriptors into Java objects.
• Make calls to the specific generator to process the descriptors.
• Generate code from the descriptors and templates.

• Write CodeGeneratorResponse to stdout.



Check It Out!

• Common Plugin Framework (Java):
• https://github.com/turbonomic/protoc-plugin-common

• Spring REST Plugin:
• https://github.com/turbonomic/protoc-gen-spring-rest

• Turbonomic - Please	stop	by	Booth	S	C-25


