
A Brokerless REST Interface 
for gRPC services

Roman Zimine
Turbonomic



Agenda

• Who are we?
• Monolith to µServices
• Communication 1.0
• Problems with 1.0
• gRPC to the rescue!
• REST -> gRPC Challenges
• Our Solution
• Demo
• How It Works



Spoiler Alert

• We wrote a protobuf compiler plugin (framework) to generate 
Spring Web REST controllers that we inject into the application.



Who Are We?

• Workload automation for hybrid cloud assures performance, 
while minimizing cost and maintaining compliance

• Software drives continuous state of health by matching 
workload demand to infrastructure supply

• Technology agnostic: Container Platforms, Virtualization, 
Cloud, etc. 

• Launched in 2010



Who Are We?

VSphere AWS



Who Are We?

VSphere AWS



Who Are We?

VSphere

Turbonomic

AWS



Monolith to µServices

• Bigger customers have bigger environments.
• Q: How do we go from managing 10,000 entities to 1,000,000? 
• A: Independently scalable containerized components!



Monolith to µServices

VSphere

AWS



Monolith to µServices

VSphere

Mediation

AWS

Abstraction



Monolith to µServices

VSphere

Mediation

AWS

Analysis

Policy

History

Abstraction



Monolith to µServices

VSphere

Mediation

AWS

Analysis

Policy

History

APIAbstraction



Monolith to µServices

VSphere

Mediation

AWS

Analysis

Policy

History

APIAbstraction



Communication 1.0

• Pub-sub with protobuf.
• Synchronous calls via Java interfaces hiding Spring REST.



Communication 1.0

• Pub-sub with protobuf.
• Synchronous calls via Java interfaces hiding Spring REST.

Java	interface	used	by	the	clients.



Communication 1.0

• Pub-sub with protobuf.
• Synchronous calls via Java interfaces hiding Spring REST.

Java	interface	used	by	the	clients.

REST	controller	 in	the	component.



Problems with 1.0

• Developer productivity – Lots of boilerplate code!
• Creating and documenting Java objects to match protobuf objects used 

in pub-sub.
• Manually implementing an RPC-like layer using Java interfaces.

• Performance (speed - make calls faster)



gRPC to the rescue!
Service	definition



gRPC to the rescue!
Service	definition Service	implementation	 (server)



gRPC to the rescue!
Service	definition Service	implementation	 (server)

Service	usage	(client)



REST -> gRPC Challenges

• Developer Productivity (again!)
• None of our favourite tools work (cURL, Swagger/OpenAPI).
• No equivalent tools existed in the gRPC ecosystem.

• grpc-gateway was the most promising, but requires a proxy.



Our Solution

• A protobuf compiler plugin to generate Spring Web REST 
controllers that we inject into the application context.



Our Solution

• A protobuf compiler plugin (framework) to generate Spring Web 
REST controllers that we inject into the application context.

Service	definition



Our Solution

• A protobuf compiler plugin (framework) to generate Spring Web 
REST controllers that we inject into the application context.

Service	definition Generated	controller	(excerpt)



Demo



How It Works

• Read CodeGeneratorRequest proto from stdin.



How It Works

• Read CodeGeneratorRequest proto from stdin.



How It Works

• Read CodeGeneratorRequest proto from stdin.



How It Works

• Read CodeGeneratorRequest proto from stdin.

• For each file:



How It Works

• Read CodeGeneratorRequest proto from stdin.
• For each file:

• Parse protobuf descriptors into Java objects.



How It Works

• Read CodeGeneratorRequest proto from stdin.
• For each file:

• Parse protobuf descriptors into Java objects.



How It Works

• Read CodeGeneratorRequest proto from stdin.
• For each file:

• Parse protobuf descriptors into Java objects.



How It Works

• Read CodeGeneratorRequest proto from stdin.
• For each file:

• Parse protobuf descriptors into Java objects.
• Make calls to the specific generator to process the descriptors.



How It Works

• Read CodeGeneratorRequest proto from stdin.
• For each file:

• Parse protobuf descriptors into Java objects.
• Make calls to the specific generator to process the descriptors.



How It Works

• Read CodeGeneratorRequest proto from stdin.
• For each file:

• Parse protobuf descriptors into Java objects.
• Make calls to the specific generator to process the descriptors.
• Generate code from the descriptors and templates.



How It Works

• Read CodeGeneratorRequest proto from stdin.
• For each file:

• Parse protobuf descriptors into Java objects.
• Make calls to the specific generator to process the descriptors.
• Generate code from the descriptors and templates.

• Write CodeGeneratorResponse to stdout.



How It Works

• Read CodeGeneratorRequest proto from stdin.
• For each file:

• Parse protobuf descriptors into Java objects.
• Make calls to the specific generator to process the descriptors.
• Generate code from the descriptors and templates.

• Write CodeGeneratorResponse to stdout.



Check It Out!

• Common Plugin Framework (Java):
• https://github.com/turbonomic/protoc-plugin-common

• Spring REST Plugin:
• https://github.com/turbonomic/protoc-gen-spring-rest

• Turbonomic - Please	stop	by	Booth	S	C-25


