
kubectl apply
...and the dark art of declarative object management

Aaron Levy
CoreOS

github/slack: @aaronlevy

Why "the dark art"?

● Because Harry Potter references get your talk accepted

And...

● Because kubectl apply may not behave how you expect

Why "the dark art"?

My original understanding of the `kubectl apply` behavior:

It... "applies" configuration, right?

● Perfect. Talk over.

$ kubectl apply --help
Apply a configuration to a resource by filename or
stdin. This resource will be created if it doesn't
exist yet.

Why "the dark art"?

When I started more heavily using 'apply', I started to see:

● Inconsistent behavior across various object types
● Inconsistent behavior across various fields
● Unexpected (and somewhat vague) errors

*most of these were my fault

Why "the dark art"?

I didn't really understand how 'apply' worked.
So I began digging into the behavior:

● How are field values calculated?
● How are patches generated?
● How is the final object generated?
● Is the functionality client or server side (or both)?

What does kubectl apply do?

kubectl apply --help

● When invoked, does a three-way diff between
the previous configuration, the provided input
and the current configuration of the resource,
in order to determine how to modify the
resource.

● Applies the changes you’ve made, without
overwriting changes to properties you haven’t
specified.

How `apply` changes are calculated

Calculating the changes to the object are done by evaluating three sources:

● Object configuration file
○ A file that defines the configuration for a Kubernetes object.

● Live object configuration
○ The object as it exists in the Kubernetes cluster

● Last Applied Configuration
○ View of the object the last time `apply` was invoked

Create object
$ kubectl apply --filename my-app.yaml

Creates object(s), but also sets the annotation:

kubectl.kubernetes.io/last-applied-configuration

● Set to match the object configuration file.
● Used to compute field add/update/delete

last-applied-configuration

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 template:
 metadata:
 labels:
 app: my-app
 spec:
 containers:
 - name: my-app
 image: my-app:v1

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-app
 annotations:

 kubectl.kubernetes.io/last-applied-configuration: |
{"apiVersion":"apps/v1beta1","kind":"Deployment","metadata":
{"annotations":{},"name":"my-app","namespace":"default"},"sp
ec":{"template":{"metadata":{"labels":{"app":"my-app"}},"spe
c":{"containers":[{"image":"my-app:v1","name":"my-app"}]}}}}

 spec:
 template:
 metadata:
 labels:
 app: my-app
 spec:
 containers:
 - name: my-app
 image: myapp:v1

Base Object

Example of adding a field

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 minReadySeconds: 5
 template:
 spec:
 containers:
 - name: my-app
 image: myapp:v1

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 template:
 spec:
 containers:
 - name: my-app
 image: myapp:v1

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 template:
 spec:
 containers:
 - name: my-app
 image: myapp:v1

$ kubectl apply --filename my-app.yaml
Exists in local, but not on last-applied/live. Action: Add

Last Applied
**part of the live object

Live ObjectLocal Object

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 minReadySeconds: 5
 template:
 spec:
 containers:
 - name: my-app
 image: myapp:v1

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 minReadySeconds: 5
 template:
 spec:
 containers:
 - name: my-app
 image: myapp:v1

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 minReadySeconds: 5
 template:
 spec:
 containers:
 - name: my-app
 image: myapp:v1

Last Applied
**part of the live object

Live ObjectLocal Object

Field has been added to live object, and the last-applied
annotation (to be used in future calculations).

Example of deleting a field

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 template:
 spec:
 containers:
 - name: my-app
 image: myapp:v1

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 minReadySeconds: 5
 template:
 spec:
 containers:
 - name: my-app
 image: myapp:v1

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 minReadySeconds: 5
 template:
 spec:
 containers:
 - name: my-app
 image: myapp:v1

$ kubectl apply --filename my-app.yaml
Exists in last/live, but not in local object. Action: Delete

Last Applied
**part of the live object

Live ObjectLocal Object

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 template:
 spec:
 containers:
 - name: my-app
 image: myapp:v1

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 template:
 spec:
 containers:
 - name: my-app
 image: myapp:v1

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 template:
 spec:
 containers:
 - name: my-app
 image: myapp:v1

Field removed from last-applied annotation, and live object.

Last Applied
**part of the live object

Live ObjectLocal Object

Okay, it can add and remove fields.

What else?

Preserving & Enforcing Fields

Allow some fields to be "enforced" by being specified as part
of your object configuration .

If a field is left unspecified, it will be ignored during the patch
calculations.

Leaving some fields able to be controlled by other
components. For example, an autoscaler managing replicas.

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 template:
 spec:
 containers:
 - name: my-app
 image: myapp:v1

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 template:
 spec:
 containers:
 - name: my-app
 image: myapp:v1

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 replicas: 3
 template:
 spec:
 containers:
 - name: my-app
 image: myapp:v1

Replica count only exists in the live object. It is not
defined in our local config (do not change during apply).

Last Applied
**part of the live object

Live ObjectLocal Object

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 template:
 spec:
 containers:
 - name: my-app
 image: myapp:v1

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 template:
 spec:
 containers:
 - name: my-app
 image: myapp:v1

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 replicas: 5
 template:
 spec:
 containers:
 - name: my-app
 image: myapp:v1

Increase replica count external to the object configuration.
$ kubectl scale deployment/my-app --replicas=5

Last Applied
**part of the live object

Live ObjectLocal Object

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 template:
 spec:
 containers:
 - name: my-app
 image: myapp:v2

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 template:
 spec:
 containers:
 - name: my-app
 image: myapp:v1

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 replicas: 5
 template:
 spec:
 containers:
 - name: my-app
 image: myapp:v1

We now want to update the container image:
$ kubectl apply --filename my-app.yaml

Last Applied
**part of the live object

Live ObjectLocal Object

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 template:
 spec:
 containers:
 - name: my-app
 image: myapp:v2

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 template:
 spec:
 containers:
 - name: my-app
 image: myapp:v2

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 replicas: 5
 template:
 spec:
 containers:
 - name: my-app
 image: myapp:v2

Container image is changed, while replica count in live
object is ignored / preserved during the update.

Last Applied
**part of the live object

Live ObjectLocal Object

Let's talk about merge calculations

We've seen how `kubectl apply` can add, update, remove,
and preserve object fields.

But how are these field values being calculated?

Merge Calculations
There are several ways that different field types can be merged:

● Primitives / string, int, boolean (examples: image, replicas)
○ Action: Replace

● Maps / objects (examples: labels, metadata, spec)
○ Action: Merge elements, or subfields

● Lists (examples: containers, ports, args)
○ Action: Depends...

Merge Calculations - Lists
Several strategies, which depends on the field:

● Replace entire list in-place
● Merge elements in a list of objects

containers:
- name: my-app
 image: myapp:v2
 args: ["a", "c"]

containers:
- name: my-app
 image: myapp:v2
 args: ["a", "b"]

containers:
- name: my-app
 image: myapp:v2
 args: ["a", "b", "d"]

$ kubectl apply --filename my-app.yaml

● ["a", "c"]

Last Applied
**part of the live object

Live ObjectLocal Object

containers:
- name: my-app
 image: myapp:v2
 args: ["a", "c"]

containers:
- name: my-app
 image: myapp:v2
 args: ["a", "c"]

containers:
- name: my-app
 image: myapp:v2
 args: ["a", "c"]

Merge Calculations - Lists (Objects)

containers:
- name: app
 image: app:v1
- name: sidecar
 image: sidecar:v0.1.0

containers:
- name: app
 image: app:v1

containers:
- name: app
 image: app:v1
 args: ["prod"]

$ kubectl apply --filename app.yaml

Last Applied
**part of the live object

Live ObjectLocal Object

containers:
- name: app
 image: app:v1
- name: sidecar
 image: sidecar:v0.1.0

containers:
- name: app
 image: app:v1
- name: sidecar
 image: sidecar:v0.1.0

containers:
- name: app
 image: app:v1
 args: ["prod"]
- name: sidecar
 image: sidecar:v0.1.0

tolerations:
- key: "baz"
 operator: "Exists"
 effect: "NoSchedule"

tolerations:
- key: "foo"
 operator: "Exists"
 effect: "NoSchedule"

tolerations:
- key: "foo"
 operator: "Exists"
 effect: "NoSchedule"
- key: "bar"
 operator: "Exists"
 effect: "NoSchedule"

Expected actions:
● Add "baz"
● Delete "foo"
● Ignore/preserve "bar"

Last Applied
**part of the live object

Live ObjectLocal Object

tolerations:
- key: "bar"
 operator: "Exists"
 effect: "NoSchedule"
- key: "baz"
 operator: "Exists"
 effect: "NoSchedule"

tolerations:
- key: "baz"
 operator: "Exists"
 effect: "NoSchedule"

tolerations:
- key: "foo"
 operator: "Exists"
 effect: "NoSchedule"

tolerations:
- key: "foo"
 operator: "Exists"
 effect: "NoSchedule"
- key: "bar"
 operator: "Exists"
 effect: "NoSchedule"

$ kubectl apply --filename app.yaml

Last Applied
**part of the live object

Live ObjectLocal Object

tolerations:
- key: "baz"
 operator: "Exists"
 effect: "NoSchedule"

tolerations:
- key: "baz"
 operator: "Exists"
 effect: "NoSchedule"

tolerations:
- key: "baz"
 operator: "Exists"
 effect: "NoSchedule"

Merge Calculations - Lists

● Expected to see list of tolerations merged, but instead
they were replaced.

● Why did this happen?

A (very) brief patch explainer
Strategies:

● JSON Merge Patch
○ https://tools.ietf.org/html/rfc7386

● Strategic Merge patch
○ Custom to Kubernetes

Strategic Merge Patch
With a Strategic Merge Patch, you can:

● Treat a list much like a map, and merge elements of the list based
on predefined patchMergeKey.

● Individual elements are then added/updated/removed

Strategic Merge - patchMergeKey

● Defined on a per-field basis
● Exists in the Kubernetes source code

Lookup directly:
https://github.com/kubernetes/api/blob/master/core/v1/types.g

o

Or via api-reference
https://kubernetes.io/docs/api-reference/v1.8

Strategic Merge - patchMergeKey

type PodSpec struct {
// +patchMergeKey=name
// +patchStrategy=merge
Containers []Container `patchStrategy:"merge" patchMergeKey:"name"`

// +optional
Tolerations []Toleration

// +optional
// +patchMergeKey=name
// +patchStrategy=merge
Volumes []Volume `patchStrategy:"merge" patchMergeKey:"name"`

}

But wait! There's More!

Merge Calculations - Defaulted Fields

"Defaulted" fields may be added to the object.

On a deployment object, for example:
● Replicas defaults to: 1
● Update strategy defaults to: RollingUpdate

In some cases, updating a defaulted field can be problematic.

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 template:
 # ...

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 template:
 # ...

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 replicas: 1
 strategy:
 type: RollingUpdate
 rollingUpdate:
 maxSurge : 1
 maxUnavailable: 1
 template:
 # ...

Local Object Last-Applied Live Object

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 strategy:
 type: Recreate
 template:
 # ...

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 template:
 # ...

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 replicas: 1
 strategy:
 type: RollingUpdate
 rollingUpdate:
 maxSurge : 1
 maxUnavailable: 1
 template:

Local Object Last-Applied Live Object

spec.strategy.type "recreate" incompatible with
spec.strategy.rollingUpdate

More "gotchas"

We now have a pretty good understanding of apply behavior.

However, there are considerations when using kubectl apply
with other object management techniques.

user1@foo:~ $ cat my-app.yaml

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 template:
 metadata:
 labels:
 app: my-app
 spec:
 containers:
 - name: my-app
 image: myapp:v0.1.0

* Note that `replicas`
is not present

User 1 creates initial "my-app" deployment:

user1@foo:~ $ kubectl apply -f my-app.yaml
Deployment "my-app" created

Over time the app is scaled up:

user1@foo:~ $ kubectl scale deployment my-app --replicas=3

Later, user 1 bumps the application version:

user1@foo:~ $ sed -i 's/v0.1.0/v0.2.0' my-app.yaml
user1@foo:~ $ kubectl apply -f my-app.yaml

User 2 is adding a volume, but doesn't have local copy of app

user2@bar:~ $ kubectl get deployment/my-app \
-o yaml > app-copy.yaml

user2@bar:~ $ vim app-copy.yaml
...
metadata:
 name: my-app
spec:
 replicas: 3
 template:
 spec: # ...
 volumes:
 - name: data
 hostPath:
 path: /data

User 2 thinks "Aaron said to use `apply`, so…"

user2@bar:~ $ kubectl apply -f app-copy.yaml
deployment "my-app" configured

Later, user 1 wants to bump app version again

user1@foo:~ $ sed -i 's/v0.2.0/v0.3.0/' my-app.yaml
user1@foo:~ $ git commit -am 'Bump v0.3.0'
user1@foo:~ $ kubectl apply -f my-app.yaml

User 1 inadvertently reset replicas and removed volume!

apiVersion:
apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 containers:
 [...]

apiVersion:
apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 replicas: 3
 containers:
 [...]
 volumes:
 - name: data

apiVersion:
apps/v1beta1
kind: Deployment
metadata:
 name: my-app
spec:
 replicas: 3
 containers:
 [...]
 volumes:
 - name: data

Local Object Last-Applied Live Object

● User 2 inadvertantly added fields to "last-applied". Changes
user 1's actions into "deletion" events.

What happened?

User 1's workflow did not change:
1) Modify source config
2) Use kubectl apply

But, user 2's edit changed behavior of user 1's workflow.
● Wanted: updated image field (v0.3.0)
● Got:

○ replicas reset to 1,
○ new volume removed (and other fields too)

Aaron's brief list of
recommendations

● Don't define replicas in the local object configuration file
○ And/or other fields that might be "externally managed"

● Explicitly define defaulted fields (e.g. update strategy)
○ If you need to change in the future, they are "managed"

● Use apply consistently (from same source config object)
○ Mixing imperative commands (create/edit/set) can lead

to unintended outcomes (unless you're sure of what
you're doing)

Things we didn't get to cover

● `kubectl apply --prune` & declarative object deletion

● Field conflicts when using `kubectl apply --overwrite=false`

● Interacting with last-applied-configuration annotation with

○ `kubectl apply {view,set,edit}-last-applied`

● `kubectl patch` command

Homework...
Object management documentation
● https://goo.gl/GcUqHv

Using kubectl patch
● https://goo.gl/Kyb6RX

Apply "v2" refactor proposal
● https://goo.gl/MRUCX6

Declarative Application Management
● https://goo.gl/T66ZcD

Issues related to declarative application management
● https://goo.gl/UGHLJk

Thank You!

Questions?

aaron.levy@coreos.com
github/slack: @aaronlevy

