
Would You Like Some Tracing 
With Your Monitoring?
Yuri Shkuro, Software Engineer, Uber Technologies



In This Talk

• Why should we care about tracing

• CNCF Jaeger & demo

• The Rollout Challenge

• Lessons Learned



About

• Engineer @ Uber NYC,

Observability team

• Founder of Jaeger

• Co-founder of OpenTracing

• Github: yurishkuro

• Twitter: @yurishkuro



4

BILLIONS times a day!



How Do We Know What’s Going On?

Metrics / Stats

● Counters, timers, gauges, 

histograms

● Four golden signals

● The USE method

● The RED method

● Statsd, Prometheus, Grafana

Logging

● Application events

● Errors, stack traces

● ELK, Splunk, Fluentd

Monitoring tools must “tell stories” about your system



What’s The Story Here?

2017/12/04 21:30:37 scanning error: bufio.Scanner: token too long



Metrics and Logs Don’t Cut It Anymore

Metrics and logs are per-instance.

It’s like debugging without stack traces.

We need to monitor

distributed transactions.



Context Propagation and Distributed Tracing

A

B

C D

E

{context}
{context}

{context}{context}

Unique ID → {context}

Edge service

A

B

E

C

D

TRACE

SPANS

time



Let’s look at some traces

• CNCF Jaeger, a distributed tracing system

• Created at Uber in Aug 2015

• Open sourced in Apr 2017

• http://jaegertracing.io

• Demo: http://bit.do/jaeger-hotrod

http://jaegertracing.io
http://bit.do/jaeger-hotrod


Distributed Tracing Supports:

distributed 

transaction 

monitoring

root

cause

analysis

performance 

and latency 

optimization

service 

dependency 

analysis

distributed context propagation



Who Thinks Tracing is Awesome?



Quick Poll

Does your company / organization

use distributed tracing technology

anywhere in their stack?



Why doesn’t everyone do tracing?

Instrumentation has been

TOO HARD



Tracing Instrumentation

MY SERVICE

inbound
request

outbound
request

Jaeger client library

Send trace data to Jaeger
(background thread)

1

instrumentation

Handler

Headers
TraceID

Context
Span

Context
Span

Headers
TraceID

instrumentation

Client

2

3



In-Process Context Propagation

Implicit, via thread-locals Explicit

But: thread pools, futures, etc.



Zero-Touch Tracing Instrumentation?

• Fundamentally impossible in some languages

• Otherwise not hard with explicitly passed Context

• Double-edge sword in languages with thread-locals

• Easy in request-per-thread frameworks

• Possible in async frameworks

• Difficult with adhoc threading models



What About Service Meshes?

• Envoy, Linkerd, Istio

• Move RPC logic to a side car

• Discovery, routing, health 

checking, load balancing, 

monitoring (!!!)

• To enable tracing, “just pass 

through this header”

• It’s the same in-process 

context propagation problem



Lessons From Rolling Out Tracing

Out of ~3000 microservices, 

about half are instrumented

for tracing



Aim for Zero-Touch Experience

• Use OpenTracing

• Instrument frequently used frameworks

• Many of them may be already 

instrumented with OpenTracing

• Enable tracing by default



Educate

• Distributed context propagation

is still new to many people

• Context Propagation is Built-in in OpenTracing

• Baggage is a general purpose

in-band key-value store

• span.SetBaggageItem("Bender", "Rodriguez")

A

C D

E

B



Context Propagation Use Cases

• Identifying synthetic traffic

• Can use as a dimension for metrics

• Tenancy

• E.g. at Google the top-level product (Docs, Gmail) is propagated

• Chaos engineering

• Random killings must stop!



Measure Adoption and Quality

We show tracing quality metrics

as part of “service health” dashboards

Clear instructions how to improve



Trace Quality Metrics by Service



Integrate With Other Tools

• Black box testing

• External probes exercising the backend APIs

• Low traffic allows 100% sampling

• Incident reports include links to specific traces

• Developer Studio

• Internal Web tool to simulate trip workflows

• Makes a lot of API calls capturing all payloads

• All requests are traces and traces are available in the same Web UI



Show Value

• Tracing is a product

• Engineers are your customers



Service Dependency Analysis

• Who are my upstream and downstream dependencies?

• How many different workflows depend on my service?

• Is my service a critical (tier 1) service for core business flows?

• How do my SLIs affect other services?

• Will my service survive Halloween?

Tough questions when ~3000 microservices are working together



Does Dingo Depends on Dog?



From Firefighting to Fire Prevention

Use Distributed Tracing to

• Understand your system

• Optimize performance

• Increase efficiency

• Improve reliability



For More Information on Tracing

• SIG Jaeger Update, Thursday, December 7 • 11:10am - 11:45am

• SIG Jaeger Deep Dive, Thursday, December 7 • 2:00pm - 3:20pm

• OpenTracing Salon, Thursday, December 7 • 3:50pm - 4:50pm

• Jaeger Salon, Friday, December 8 • 2:00pm - 3:20pm

• Also don’t miss the keynote by Ben Sigelman
• Service Meshes and Observability

• Wednesday, December 6 • 5:10pm - 5:30pm



Thank You

• Jaeger: http://jaegertracing.io

• Twitter: https://twitter.com/jaegertracing

• Gitter chat: https://gitter.im/jaegertracing/

• Demo walkthrough: http://bit.do/jaeger-hotrod

• Contributors are welcome

http://jaegertracing.io
https://twitter.com/jaegertracing
https://gitter.im/jaegertracing/
http://bit.do/jaeger-hotrod

