
Multitenancy Deep Dive
Thursday, December 7 • 2:00pm - 3:20pm
David Oppenheimer (Google) davidopp@google.com
Quinton Hoole (Huawei) quinton.hoole@huawei.com

Agenda

• Presentations
• Discussion of topics of interest
• Ideas for 2018 (including whether we should create a Working Group)

Presentations

• Quinton Hoole, Huawei
• Jessica Frazelle, Microsoft
• Harry Zhang, Hyper
• David Oppenheimer, Google
• Tim Allclair, Google

Multi-Tenancy Models
Jessie Frazelle - Microsoft

refer to original doc

Soft Multi-Tenancy

- multiple users _within the same organization_ in the same cluster.

- could have possible bad actors such as people leaving the company, etc.

- Users are not thought to be actively malicious since they are within the same
organization, but potential for accidents or “evil leaving employees.”

- A large focus is to prevent accidents.

Hard Multi-Tenancy

- multiple users, from various places, in the same cluster.

- means that anyone on the cluster is thought to be potentially malicious and
therefore should not have access to any other tenants resources.

Access to k8s API

For our purposes, we only run untrusted workloads, but we have our own trusted
API on top of the kubernetes API

(seems like SaaS from davidopp’s doc.)

A different multi-tenancy models would also restrict access to the API and create
roles, etc. Refer to that doc for more details.

Host OS

Container Runtime

Network

DNS

AuthN/AuthZ

Isolation of Master and
System nodes.

Isolation of system
services.

Restricting access to
host resources.

Environment Variables

Thoughts about Hard Multi-tenancy in
Kubernetes with Hypervisor based

Container Runtimes
Harry (Lei) Zhang @resouer

Background

● Hypernetes (Stackube):
○ A multi-tenant Kubernetes distro with hypervisor based container runtime

■ runV, now upgrading to KataContainers
○ https://github.com/openstack/stackube

■ Upstream Kubernetes + customized plugins
■ The core system behind https://hyper.sh/
■ Passed 100% conformance e2e tests

Container Runtime: Isolation & Security

● KataContainers

Container Runtime: OS Multi-Tenancy

BYOK (Bring Your Own Kernel):

annotations:
 com.github.katacontainers.KernelPath: "/boot/vmlinuz-custom-myversion”

(This has already been implemented)

Or even:

annotations:
 com.github.katacontainers.KernelPath: "/boot/windows-nano-server-myversion”

(This has also been concept proved)

Container Runtime: OS Multi-Tenancy

Tenant

● Stackube:
○ Tenant == Namespace

■ CRD
■ tenant controller with RBAC
■ Keystone

● Q:
○ Do we need nested namespace? (One Tenant with multiple namespaces?)

■ Tenant == Namespace, or Tenant 1:N Namespace

Network

● Stackube:
○ One Network per Tenant

■ CRD
■ network controller
■ Neutron CNI plugin

○ L2 network isolation
■ Pods of same Tenant belong to same subnet

● Q:
○ Do we really need Network API object? Or Network Policy should be the plan?.

■ And what about multiple networks?
○ Is L2 isolation specially preferred for hard multi-tenancy?
○ Do we need to isolate Nodes and Pods by different subnets?

DNS

● Stackube:
○ Per kube-dns per namespace (tenant)

● Q:
○ Discussion: https://github.com/kubernetes/dns/issues/132
○ Other approach:

■ Sidecar, we use this in old version of Hypernetes
■ Enforce by CoreDNS (+RBAC)

Summary

● KataContainers can play an important role in hard-multitenant Kubernetes
○ Thanks to CRI

● While other aspects like Tenant, Network, DNS etc still need to be clearly
defined or updated to build the whole stack up.

● Then what is the Kubernetes/Cloud Native way to solve them?

Multitenancy taxonomies
David Oppenheimer, Google
December 7, 2017

Control plane vs. node multitenancy
All policies are specified through the control plane.
Distinction is whether policy controls sharing of control plane or nodes.

Control plane multitenancy
• RBAC
• EventRateLimit admission controller

Many for node multitenancy
• ResourceQuota / LimitRange / request / limit / priority
• node affinity, pod affinity, taints/tolerations
• PodSecurityPolicy
• NetworkPolicy

How control plane and node are used
control plane

trusted untrusted

code

trusted

untrusted

enterprise running software they
wrote and/or thoroughly

vetted

SaaS provider running untrusted
code (CI/CD-as-a-service,

open-source-as-a-service, etc.)

PaaS/CaaS (particularly KaaS)

small company running software
they wrote and/or thoroughly

vetted

Other axes
• What do users see?

• objects (or subset) in user’s namespace(s) or all namespace(s)?
• nodes?
• metadata about other tenants (namespace collision, service names in

DNS, etc.)?
• Node-level isolation mechanism

• containers + PodSecurityPolicy, seccomp, AppArmor, SELinux, ...
• container + hypervisor (nested virtualization)
• dedicated nodes (taints/tolerations or anti-affinity)

Secure Containers

Tim Allclair, Google

Secure
Containers

Stronger Isolation

● Sandboxing untrusted code

● VM strength isolation

Work in Progress

● CRI-O with Clear Containers

● Frakti with runV

● (soon!) Kata Containers

● Cloud providers exploring CaaS

It's time to agree on
the abstractions,

before we diverge too
much.

Open Questions
We're kicking off the discussions now.

What are the properties of a sandbox?

● Must it employ full virtualization technology?

○ Or could a sandbox be a very restrictive seccomp profile?

● What does sandboxing imply about networking?

● What does sandboxing imply about auth[nz]?

● What features is it OK to break with a sandbox?

○ E.g. cross-container IPC? host namespaces? etc.

Where is the sandbox boundary?

Pods?

● Easier resource sharing & communication
between containers.

● Better for a serverless (nodeless) model

● Much simpler networking

Containers?

● Finer grained control allows for models
like trusted sidecars

Or should we consider something else?

Namespaces? Sandbox resource? A combination of pods + containers?

API Design
How do we surface sandboxes

to the user?

● Explicit, without choice of backend?

○ Sandbox *bool

● Explicit, with choice of backend?

○ Sandbox string

● Implicit, derived from security
attributes?

○ See: Entitlements

Implementation
details

Sandboxed & unsandboxed containers should
live side-by-side.

Should sandboxing be enforced by the runtime
(CRI), or the Kubelet?
Does the kubelet decide which CRI server to talk to, or just
pass the sandbox bit on the CreateContainer request?

Stay tuned!

Look for a design proposal soon...

Expect more discussions in sig-node meetings

Thoughts? Questions? Get in touch!

● tallclair@google.com
● @tallclair (github, slack, twitter)

Possible group discussion topics (1)
• How are you (and/or your customers) using the existing
Kubernetes multitenancy features? What problems/use cases
are you solving?

• What would you (and/or your customers) like to do, but can’t (or
are rolling your own, and would like it supported in upstream)?
What problems/use cases/pain points would this address?

(Consider both control plane and node support for multitenancy)

Possible group discussion topics (2)
• Hierararchy vs. labels vs. good enough how it is

• policies that span namespaces and/or apply within a namespace?
• Need better hiding of tenants from one another?
• Issues with tenants DoSing each other via the control plane?
• Uses cases and missing features for “hard” multitenancy

• need more isolation in the control plane?
• need “secure containers”?

2018 planning

• Should we create a multitenancy Working Group?
• Specific multitenancy features you want and/or are interested in

working on?

Note: a mailing list has been set up -- please join it!
https://groups.google.com/forum/#!forum/kubernetes-wg-multitenancy

