
Container Identity Working Group 
Update
Greg Castle (@mrgcastle), GKE/Kubernetes Security, Google
Clayton Coleman (@smarterclayton), Architect and Engineer on Kubernetes, 
OpenShift, Red Hat



Today

• Focus: identity for applications
• Describe current state and future plans (10-15min)
• Discussion, Q&A (20 min)



Current state of K8s identity

• Users can auth a few ways (e.g. OAuth/OIDC, cert, password)
• But for applications only one built-in identity option
• K8s service account
• Not recognized outside the cluster
• JWT isn’t bound to an audience
• JWT lives forever (or until service account deleted)
• Issues scaling (#4808)
• SA tokens == permissions, get all secrets implications

https://github.com/kubernetes/kubernetes/issues/48408


Use Cases

• Secrets: Password in Hashicorp Vault
• Enterprise: Manage ID in LDAP/AD/Proprietary. One src of truth
• Multi-cloud: Google/Amazon/Azure IDs for various services
• Service-Service: Intra + inter cluster
• Container: Monitoring sidecar needs different ID to workload



What we want 

• Get ID to apps with ≈0 developer effort
• Provision ID for multiple external systems
• Segmentation: minimum blast radius for compromise
• Limited lifetime, auto-rotation
• Non-exportable where possible (e.g. TPM available)



What is happening in this space?

• SPIFFE and SPIRE (spiffe.io)
• Application x509 ID and standard naming scheme, API for workloads to 

access ID, runtime env for attestation, rotation
• Istio (istio.io)

• Lots of service management features. Identity: SPIFFE-named x509 
certs to identify services

• Vault integration (goo.gl/ZuAPtn)
• Complete, but work underway (next slide, bound SA tokens) to scope 

K8s SA tokens



What is coming: tokenrequests API

Initial design PR: kubernetes/community/pull/1460

Improvements:
• Audience to address Vault (and similar) use case
• Expiration
• Scalability: not reliant on central DB
• Verification by external systems
• K8s doesn’t have to understand external ID systems

https://github.com/kubernetes/community/pull/1460


What does that get us?

• Next steps to get “≈0 developer effort”
• Node agent interacts with tokenrequests API
• Delivers creds to workloads with flex volumes
• Client libs use JWT directly; or
• Exchange for different identity (e.g. cloud provider)

• Flex volume pattern useful for other ID provisioning, don’t 
need to use K8s JWTs at all



Something like this

2. Get JWT for
k8s-SA-1

Node A

Node Agent

Container1

Client lib

App1

3. JWT Proof:
k8s-SA-1
https://mycluster:ns/k8ssa1

4. JWT Proof:
k8s-SA-1
https://mycluster:ns/k8ssa1

1. Get ID token
k8s-SA-1 == external-SA-1

5. Exchange k8s-SA-1 for
external-SA-1

6. external-SA-1External 
System



Future work

• Improve flex volume usability for attaching identities to pods
• Consider identity API type instead of volume
• Support for ACL’ing with RBAC



Join the discussion

• See WG recording (goo.gl/b52mhR) where this system was 
discussed

• Meet Fridays every 2 weeks: goo.gl/cbq1Ca
• Join mailing list for cal invite

• Now: Group discussion and Q&A

https://goo.gl/b52mhR
https://goo.gl/cbq1Ca


Discussion topics

• Use cases for container identity (more granular than pod): e.g. 
monitoring sidecar - others?

• What identity systems do people want to integrate?
• How do you use k8s service accounts in applications? Mostly 
default per namespace or more sophisticated?

• What is your organization src of truth for robot accounts?


