
UDP in K8S: Signed, Sealed,
but Delivered?
Amanpreet Singh, Software Engineer, Crowdfire  

Obligatory UDP Joke

Where do we use UDP anyway?

KubeDNS 

• Service discovery! 

• Crucial in a cluster where services call each other all the time

Where do we use UDP anyway?

KubeDNS 

ProTip: Use pre-existing environment variables like these to
save all the DNS calls! 

${MYAPP_SERVICE_HOST}

Where do we use UDP anyway?

StatsD  

• Statsd+graphite for custom business and service metrics. 

• Single-pod deployment backed by a persistent volume (EBS) 

• Not HA since Kubernetes restarts it quickly in case of failure

K8S Networking Primer

Key Concepts: 

• Every pod has a unique IP 

• These IPs are routable from all the pods 
(even on different nodes)

K8S Networking Primer

Communication among applications: 

• Pod IPs are changing all the time 

• Reasons include: rolling updates, scaling events, node crashes 

• Pod IPs unreliable for using directly

K8S Networking Primer

Kubernetes Services: 

• Static Virtual IPs that act as a loadbalancer 

• Group of Pod IPs as endpoints (identified via label selectors)

K8S Networking Primer

kind: Service
apiVersion: v1
metadata:
 name: svc2
spec:
 type: clusterIP
 selector:
 app: myapp
 clusterIP: 100.64.5.119
 ports:
 - name: http
 port: 80

K8S Networking Primer

apiVersion: v1
kind: Endpoints
metadata:
 name: svc2
subsets:
- addresses:
 - ip: 172.16.85.64
 - ip: 172.16.21.6
 - ip: 172.16.21.60
 ports:
 - name: http
 port: 8080
 protocol: TCP

K8S Networking Primer

How do these services work? 

• Magic ✨ 

• Actually, it's even more complicated than that...

K8S Networking Primer

K8S Networking Primer

kube-proxy 

• Controller that watches the apiserver for service/endpoints
updates 

• Modifies iptables rules accordingly

K8S Networking Primer

K8S Networking Primer

protocol: UDP
src_ip: pod1
src_port: 12345
dst_ip: pod9
dst_port: 8125

protocol: UDP
src_ip: pod1
src_port: 12345
dst_ip: svc2
dst_port: 8125

K8S Networking Primer

K8S Networking Primer

Protocol: UDP
Protocol number: 17

K8S Networking Primer

TTL: 22 sec

K8S Networking Primer

src: 172.16.107.10 sport: 59350
dst: 100.64.5.119 dport: 8125
(StatsD service IP) (StatsD port)

K8S Networking Primer

[UNREPLIED]
reply hasn’t been received yet

K8S Networking Primer

(StatsD pod IP) (StatsD port)
src: 172.16.74.31 sport: 8125
dst: 172.16.107.0 dport: 59350

K8S Networking Primer

What went wrong?

• When the StatsD pod is recreated, the metrics for some of the
applications won’t reach StatsD  

• Some applications were still able to send metrics successfully 

• Restarting the application pods fixed it without touching the
StatsD pod at all

How did we figure it out?

Observations: 

• Problem happening only for applications that send metrics very
often 

• Problem goes away when pods of metric-sending application are
deleted/recreated

How did we figure it out?

conntrack -L -p udp --dst 100.64.5.119 \
 --reply-src 100.64.5.119  
 
 

Entries were present even after the StatsD pod came
back up!

How did we figure it out?

Conclusions: 

• Stale conntrack entries 

• TTL not expiring for pods sending metrics often

Mitigation

• Run conntrack command (via cron) to delete stale entries 

• Modify kube-proxy to run a control loop to flush stale entries

Why did it happen?

• Couple of cases were handled in kube-proxy: 

• update/removal of endpoints 

• deletion of service/ports 
 

• Entries not flushed when endpoint set changes from empty to
non-empty

Why did it happen?

• When the endpoint set is empty, conntrack entries blackhole the
traffic 

• When the UDP socket is reused, and there’s new activity, the
stale entry persists until the next flush

Is it fixed now?

• PR #48524 in kube-proxy 

• Adds a check to see if the endpoints set was empty before
adding this new entry 

• If it was empty, it’s added to the list of stale service-port names
to be flushed

https://github.com/kubernetes/kubernetes/pull/48524

Thank you!

Find me at:

 Twitter/Github/Medium: @ApsOps

