
Diego Pontoriero
Github/Slack: @diegs | diegs@coreos.com

Self-Hosted Kubernetes
How and Why

Top 3 contributor

Lead 6 SIGs

Creators of etcd

ENTERPRISE KUBERNETES

Enterprise support

Field Engineering

Educational Services

We are CoreOS

Enterprise-ready

Automated operations

Cloud agnostic and hybrid

KUBERNETES COMMUNITY CONTAINERIZATION SUCCESS

Who this talk is for

Cluster Operators Kubernetes
Contributors

People who enjoy
clever hacks

What is self-hosted Kubernetes?

What is self-hosted Kubernetes?

$ kubectl -n kube-system get deployments
NAME DESIRED CURRENT
kube-controller-manager 2 2
kube-dns 1 1
kube-scheduler 2 2

$ kubectl -n kube-system get daemonsets
NAME DESIRED CURRENT NODE SELECTOR
kube-apiserver 1 1 node-role.kubernetes.io/master=

$ kubectl -n kube-system get secrets
NAME TYPE
kube-apiserver Opaque
kube-controller-manager Opaque

A talk in three parts

Why
self-hosted?

How does it
work? What’s next?

Part 1: Why self-hosted?

Why self-host Kubernetes?

● Leverage Kubernetes’ strengths

● Simplified, unified node management

● Streamlined, robust cluster lifecycle management

Desirable control plane properties

● Scales up and down automatically
● Handles node failures gracefully
● Safely rolls out new versions
● Rollback on upgrade failures

And what about...

● Advanced networking
● RBAC
● Health checking & monitoring
● Resource allocation & accounting

Simplified node management

Minimal on-host requirements:

Kubelet Container
Runtime

Credentials

kubeconfig, etc.

No distinction between masters and workers!

So how do we select masters?

Add a label to nodes you want to run “master” workloads:

$ kubectl label node n1 master=true

Or have the kubelet start as a master:

--node-labels=master=true

Any node can become a master at any time!

$ kubectl apply -f kube-apiserver.yaml

$ kubectl apply -f kube-scheduler.yaml

$ kubectl apply -f kube-controller-manager.yaml

$ kubectl apply -f kube-proxy.yaml

Streamlined lifecycle management

Better yet: automate.

Part 2: How does it work?

Three main areas to solve:

How does self-hosted Kubernetes work?

Bootstrapping Upgrades Disaster
Recovery

How it works: Bootstrapping

How it works: Bootstrapping

● Control plane runs as DaemonSets and Deployments…

● …but we need a control plane to create DaemonSets
and Deployments

Clever Hack #1: Use a temporary, static control plane
to bootstrap a self-hosted cluster

Bootkube

https://github.com/kubernetes-incubator/bootkube

Temporary control
plane manifests

Self-hosted control
plane manifests

Initial (master) node

Temporary control
plane

Self-hosted control
plane

Bootkube

Bootstrapping illustrated

(Special thanks to Aaron Levy for the original version of these slides)

etcd

Kubelet

Bootkube

etcd

Kubelet

Bootkube
Create static pods

Static Pods

API Server

Scheduler

Controller
Manager

etcd

Kubelet

Bootkube
Create static pods

Static Pods

API Server

Scheduler

Controller
Manager

etcd

Kubelet

Bootkube

Static Pods

API Server

Scheduler

Controller
Manager

etcd

Kubelet

Bootkube

Static Pods

API Server

Scheduler

Controller
Manager

etcd

Kubelet

Bootkube
Create self-hosted

components

etcd

Kubelet

Bootkube

Static Pods

API Server

Scheduler

Controller
Manager

Self-Hosted

API Server

Scheduler

Controller
Manager

Create self-hosted
components

Static Pods

API Server

Scheduler

Controller
Manager

Self-Hosted

API Server

Scheduler

Controller
Manager

etcd

Kubelet

Bootkube

etcd

Kubelet

Bootkube

Self-Hosted

API Server

Scheduler

Controller
Manager

Self-Hosted

API Server

Scheduler

Controller
Manager

etcd

Kubelet

How it works: Upgrades

How it works: Upgrades

$ kubectl edit -n kube-system daemonsets/kube-apiserver
apiVersion: apps/v1beta2
kind: DaemonSet
metadata:
 name: kube-apiserver
 namespace: kube-system
spec:
 template:
 spec:
 containers:
 - name: kube-apiserver
 image: gcr.io/google_containers/hyperkube:v1.8.4
 command:
 - /hyperkube
 - apiserver

How it works: Disaster recovery

Recover from backup

Recover entire control
plane

How it works: Disaster recovery

Failure modes:

Recover individual
componentPartial control plane loss

Total control plane loss

Total cluster loss

Pod checkpointer

● Keen observers may have noticed a trick during the
upgrade demo

● How do you upgrade apiservers? How do you handle
master node reboots?

Clever Hack #2: Run a “checkpointer” daemon to run
static pods when the control plane is non-functional

Pod checkpointer: how it works

Kubelet Apiserver

Checkpointer
Pod 1

Pod 2

Pod 1

Pod 2Active checkpoints
● (None)

Inactive checkpoints
● Pod 1
● Pod 2

Pod checkpointer: how it works

Kubelet Apiserver

Checkpointer
Pod 1

Pod 2

Pod 1

Pod 2Active checkpoints
● (None)

Inactive checkpoints
● Pod 1
● Pod 2

Pod checkpointer: how it works

Kubelet Apiserver

Checkpointer
Pod 1 Pod 1

Pod 2Active checkpoints
● Pod 2

Inactive checkpoints
● Pod 1

Pod 2
(static)

Pod checkpointer: how it works

Kubelet Apiserver

Checkpointer
Pod 1 Pod 1

Pod 2Active checkpoints
● Pod 2

Inactive checkpoints
● Pod 1

Pod 2
(static)

Pod 2

Kubelet

Pod checkpointer: how it works

Apiserver

Checkpointer
Pod 1 Pod 1

Pod 2Active checkpoints
● (None)

Inactive checkpoints
● Pod 1
● Pod 2

Pod 2
(static)

Pod 2

Pod checkpointer: how it works

Kubelet Apiserver

Checkpointer
Pod 1

Pod 2

Pod 1

Pod 2Active checkpoints
● (None)

Inactive checkpoints
● Pod 1
● Pod 2

● Checkpointer doesn’t save us from all outages
○ e.g. need a functioning control plane to fix what’s broken

● If only there was a way to “jumpstart” the cluster...

Bootkube Recover

Clever Hack #3: Use bootkube to extract manifests and
create another temporary control plane

Part 3: What’s next?

Automated operations

● Automate kubectl apply with client-go
● Fine-grained control over rollout and ordering
● Pre- and post-upgrade operations

Cluster Upgrades

Kubelet Upgrades

Configuration
Management

● Run node agent as a DaemonSet
● Install new Kubelet and container runtime

● Evolve cluster configuration over time
● Change control plane settings? Sure!
● Deploy new network overlay? Sure!

Node management

● Operator communicates with node agents to
perform recovery operationsSelf-Healing

Autoscaling

Node Identity

● Provision/de-provision masters as needed
● Newly joining nodes can ask: “what should I be?”

● TLS bootstrapping provides identities to new
nodes as they join the cluster

○ https://github.com/kubernetes-incubator/bootkube/pull/663

https://github.com/kubernetes-incubator/bootkube/pull/663

Self-hosting in upstream Kubernetes

● Kubeadm: support for self-hosted clusters
○ https://github.com/kubernetes/kubeadm/issues/127

● Kubelet: built-in pod checkpointer
○ https://github.com/kubernetes/features/issues/378

● Help needed! See #sig-cluster-lifecycle

https://github.com/kubernetes/kubeadm/issues/127
https://github.com/kubernetes/features/issues/378

diegs@coreos.com

Github/Slack: @diegs

QUESTIONS?

Thanks!

Let’s talk! Meet us at booth D2

More events: coreos.com/community

LONGER CHAT?

