
Queueing Theory, In Practice
Performance Modelling in Cloud-Native Territory

Eben Freeman
@_emfree_ | honeycomb.io

Hi, I’m Eben!

currently: building cool stuff at honeycomb.io

(come talk to me afterwards about tracing, events,

observability for distributed systems . . .)

Myth: Queueing
theory combines the
tedium of waiting in
lines with the
drudgery of abstract
math.

Reality: it’s all about asking questions

What target utilization is appropriate for our service?

If we double available concurrency, will capacity double?

How much speedup do we expect from parallelizing queries?

Is it worth it for us to spend time on performance optimization?

Reality: it’s all about asking questions

Queueing theory gives us a vocabulary and a toolkit to

- approximate software systems with models

- reason about their behavior

- interpret data we collect

- understand our systems better.

I. Modelling serial systems

Building and applying a simple model

II. Modelling parallel systems

Load balancing and the Universal Scalability Law

III. Takeaways

In this talk

Caveat!

Any model is reductive, and worthless without real data!

Production data and experiments are still essential.

Caveat!

Any model is reductive, and worthless without real data!

Production data and experiments are still essential.

But having a model is key to interpreting that data:

“Service latency starts increasing measurably at 50% utilization. Is that expected?”

“This benchmark uses fixed-size payloads, but our production workloads are variable.
Does that matter?”

“This change increases throughput, but makes latency less consistent.
Is that a good tradeoff for us?”

I. Serial Systems

A case study

The Honeycomb API service

- Receives data from customers

- Highly concurrent

- Mostly CPU-bound

- Low-latency

Question: How do we allocate appropriate resources for this service?

A case study

The Honeycomb API service

- Receives data from customers

- Highly concurrent

- Mostly CPU-bound

- Low-latency

Question: How do we allocate appropriate resources for this service?

- Guesswork

A case study

The Honeycomb API service

- Receives data from customers

- Highly concurrent

- Mostly CPU-bound

- Low-latency

Question: How do we allocate appropriate resources for this service?

- Guesswork

A case study

The Honeycomb API service

- Receives data from customers

- Highly concurrent

- Mostly CPU-bound

- Low-latency

Question: How do we allocate appropriate resources for this service?

- Guesswork

- Production-scale load testing

A case study

The Honeycomb API service

- Receives data from customers

- Highly concurrent

- Mostly CPU-bound

- Low-latency

Question: How do we allocate appropriate resources for this service?

- Guesswork

- Production-scale load testing (yes! but time-consuming)

A case study

The Honeycomb API service

- Receives data from customers

- Highly concurrent

- Mostly CPU-bound

- Low-latency

Question: How do we allocate appropriate resources for this service?

- Guesswork

- Production-scale load testing (yes! but time-consuming)

- Small experiments plus modelling

An experiment

Question: What’s the maximal single-core throughput of this service?

- Simulate requests arriving uniformly at random

- Measure latency at different levels of throughput

An experiment

Our question

Can we find a model that predicts this behavior?

A single-queue / single-server model

Step 1: identify the question

- The busier the server is, the longer tasks have to wait before being completed.

- How much longer as a function of throughput?

A single-queue / single-server model

Step 2: identify assumptions about our system

- Tasks arrive independently and randomly at an average rate λ.

- The server takes a constant time S, the service time, to process each task.

- The server processes one task at a time.

Building a model

Step 3: gnarly math

Building a model

Step 3: gnarly math

Building a model

Step 3: gnarly math draw a picture of the system over time!

At any given time, how much unfinished work is at the server?

Building a model

Step 3: gnarly math draw a picture of the system over time!

At any given time, how much unfinished work is at the server?

If throughput is low, tasks almost never have to queue: they can be served

immediately.

Building a model

But as throughput increases, tasks may have to wait!

Building a model

But as throughput increases, tasks may have to wait!

Remember, we care about average wait time.

Two ways to find average wait time in this graph:

1. Average width of blue parallelograms.

Building a model

But as throughput increases, tasks may have to wait!

Remember, we care about average wait time.

Two ways to find average wait time in this graph:

1. Average width of blue parallelograms.

2. Average height of graph.

Building a model

But as throughput increases, tasks may have to wait!

Remember, we care about average wait time.

Two ways to find average wait time in this graph:

1. Average width of blue parallelograms.

2. Average height of graph.

Idea: relate them using area under graph,

then solve for wait time!

Building a model

Over a long time interval T:

(area under graph) = (width) * (avg height of graph)

 = T * (avg wait time)

 = T * W

Building a model

For each task, there’s:

- one triangle

- one parallelogram (might have width 0).

(area under graph)

 = (number of tasks) * [(triangle area) + (avg parallelogram area)]

Building a model

(area under graph)

 = (number of tasks) * [(triangle area) + (avg parallelogram area)]

Building a model

(area under graph)

 = (number of tasks) * [(triangle area) + (avg parallelogram area)]

 = (number of tasks) * [S² / 2 + S * W]

Building a model

(area under graph)

 = (number of tasks) * [(triangle area) + (avg parallelogram area)]

 = (number of tasks) * [S² / 2 + S * W]

 = (arrival rate * timespan) * [S² / 2 + S * W]

Building a model

(area under graph)

 = (number of tasks) * [(triangle area) + (avg parallelogram area)]

 = (number of tasks) * [S² / 2 + S * W]

 = (arrival rate * timespan) * [S² / 2 + S * W]

 = λT * (S² / 2 + S * W)

Building a model

(area under graph)

 = (number of tasks) * [(triangle area) + (avg parallelogram area)]

 = (number of tasks) * [S² / 2 + S * W]

 = (arrival rate * timespan) * [S² / 2 + S * W]

 = λT * (S² / 2 + S * W)

Before, we had:

(area under graph) = T * W

Building a model

So:

 (area under graph)

= T * W

= λT * (S * W + S² / 2)

Solving for W:

Building a model

As the server becomes saturated, wait time grows without bound!

no problem!
hmm . . .

oh shit

As operators, we can roughly identify three utilization regimes:

The model as general heuristic

Returning to our data

Does this model apply in practice?

Returning to our data

Does this model apply in practice?

1. Choose subset of data

Returning to our data

Does this model apply in practice?

1. Choose subset of data

2. Fit model (R, Numpy, …)

Returning to our data

Does this model apply in practice?

1. Choose subset of data

2. Fit model (R, Numpy, …)

3. Compare

Returning to our data

Does this model apply in practice?

1. Choose subset of data

2. Fit model (R, Numpy, …)

3. Compare

Lessons from the single-server queueing model

1. In this type of system, improving service time helps a lot!

Lessons from the single-server queueing model

1. In this type of system, improving service time helps a lot!

Thought experiment:

1. cut the service time S in half

2. Double the throughput λ

now twice as small

stays the same

Wait time still improves, even after you double throughput!

Lessons from the single-server queueing model

1. In this type of system, improving service time helps a lot!

Lessons from the single-server queueing model

2. Variability is bad!

If we have uniform tasks at perfectly uniform intervals, there’s never any queueing.

The slowdown we see is entirely due to variability in arrivals.

If job sizes are variable too, things get even worse.

Lessons from the single-server queueing model

2. Variability is bad!

If we have uniform tasks at perfectly uniform intervals, there’s never any queueing.

The slowdown we see is entirely due to variability in arrivals.

If job sizes are variable too, things get even worse.

As system designers, it behooves us to measure and minimize variability:

- batching

- fast preemption or timeouts

- client backpressure

- concurrency control

But wait a minute!

We don’t have one server, we have lots and lots!

What can we say about the performance of a fleet of servers?

II. Parallel Systems

Mo servers mo problems

If we know that one server can handle T requests per second with some latency SLA,

do we need N servers to handle N * T requests per second?

Mo servers mo problems

Well, it depends on how we assign incoming tasks!

- to the least busy server

- randomly

- round-robin

- some other way

Instantaneous queue lengths Cumulative latency distribution

random assignment

Instantaneous queue lengths Cumulative latency distribution

random assignment

optimal assignment
(always choose the least busy

server)

Instantaneous queue lengths Cumulative latency distribution

random assignment

optimal assignment
(always choose the least busy

server)

Optimal assignment

Given 1 server at utilization ρ (say ρ=60%):

P(queueing) = P(server is busy) = ρ

Given N servers at utilization ρ:

P(queueing) = P(all servers are busy) < ρ

Optimal assignment

If we have many servers, higher utilization gives us the same queueing probability.

To serve N times more traffic, we won’t need N times more servers.

Optimal assignment

There’s just one problem:

We’re assuming optimal assignment of tasks to servers.

Optimal assignment is a coordination problem.

In real life, coordination is expensive.

Optimal assignment

We need some coordination mechanism!

(a load balancer, cluster scheduler, etc.)

Optimal assignment

Optimal assignment

Optimal assignment

If the assignment cost per task is α, then the time to process N tasks in parallel is

αN + S

And the throughput is

N / (αN + S)

Optimal assignment

If the assignment cost per task is α, then the time to process N tasks in parallel is

αN + S

And the throughput is

N / (αN + S)

Optimal assignment

If the assignment cost per task is α, then the throughput is

N / (αN + S)

If the assignment cost per task depends on N, say Nβ+α, then the throughput is

N / (βN² + αN + S)

The Universal Scalability Law

This is one example of the Universal Scalability Law in action.

Beating the beta factor

Making scale-invariant design decisions is hard:

- at low parallelism, coordination makes latency more predictable.

- at high parallelism, coordination degrades throughput.

Beating the beta factor

Making scale-invariant design decisions is hard:

- at low parallelism, coordination makes latency more predictable.

- at high parallelism, coordination degrades throughput.

Can we find strategies to balance the two?

Beating the beta factor

Idea 1: Approximate optimal assignment

Beating the beta factor

Randomized approximation

Idea:

- finding best of N servers is expensive

- choosing one randomly is bad

- pick 2 at random and then use the better one.

Beating the beta factor

Randomized approximation

Idea:

- finding best of N servers is expensive

- choosing one randomly is bad

- pick 2 at random and then use the better one.

Beating the beta factor

Randomized approximation

Idea:

- finding best of N servers is expensive

- choosing one randomly is bad

- pick 2 at random and then use the better one

Wins:

- constant overhead for all N

- improves instantaneous max load

from O(log N) to O(log log N)

Beating the beta factor

Randomized approximation

Idea:

- finding best of N servers is expensive

- choosing one randomly is bad

- pick 2 at random and then use the better one

Wins:

- constant overhead for all N

- improves instantaneous max load

from O(log N) to O(log log N)

which is baaaasically O(1)

Beating the beta factor

Sparrow:

(and Hashicorp’s Nomad)

- distributed, stateless scheduling

- low-latency scheduling for lots of

short tasks

- uses two-random-choices

(plus optimizations)

Beating the beta factor

Idea 2: Iterative partitioning

The Universal Scalability Law applies not just to task assignment, but to any parallel process!

Example: Facebook’s Scuba (and Honeycomb): fast distributed queries over columnar data.

Beating the beta factor

Iterative partitioning

The Universal Scalability Law applies not just to task assignment, but to any parallel process!

Example: Facebook’s Scuba (and Honeycomb): fast distributed queries over columnar data.

1. Leaf nodes read data from disk, compute partial results

2. Aggregator node merges partial results

Question: What level of fanout is optimal?

Beating the beta factor

Iterative partitioning

The Universal Scalability Law applies not just to task assignment, but to any parallel process!

Example: Facebook’s Scuba (and Honeycomb): fast distributed queries over columnar data.

1. Scan time is proportional to (1 / fanout):

T(scan) = S / N

2. Aggregation time is proportional to

number of partial results

T(agg) = N * β

Beating the beta factor

T(scan) = S / N (gets better as N grows)

T(agg) = N * β (gets worse as N grows)

T(total) = N * β + S / N (at first gets better, then gets worse)

throughput ~ 1 / T(total)

 = N / (β * N² + S)

Beating the beta factor

T(scan) = S / N (gets better as N grows)

T(agg) = N * β (gets worse as N grows)

T(total) = N * β + S / N (at first gets better, then gets worse)

throughput ~ 1 / T(total)

 = N / (β * N² + S)

Beating the beta factor

Idea: multi-level query fanout

Throughput gets worse for large fanout, so:

- make fanout at each node a constant f

- add intermediate aggregators

Beating the beta factor

Idea: multi-level query fanout

add intermediate aggregators, make fanout a constant f

T(total) = S / N + (height of tree) * f * β

 = S / N + log(N) / f * f * β

 = S / N + log(N) * β

Beating the beta factor

before: T(total) = S / N + N * β

now: T(total) = S / N + log(N) * β

Result: better scaling!

Beating the beta factor

Lessons:

Making scale-invariant design decisions is hard:

- at low parallelism, coordination makes latency more predictable.

- at high parallelism, coordination degrades throughput.

But, smart compromises produce pretty good results!

- randomized choice: approximates best assignment cheaply

- iterative parallelization: amortizes aggregation / coordination cost

- USL helps quantify the effect of these choices!

III. In Conclusion

Queueing theory:
not so bad!

Lessons

Model building isn’t magic!

- State goals and assumptions

Do we care most about throughput, or consistent latency?

How is concurrency managed?

Are task sizes variable, or constant?

- Don’t be afraid!

Not just scary math

Draw a picture

Write a simulation

Lessons

Modelling latency versus throughput

- Measure and minimize variability

- Beware unbounded queues

- The best way to have more capacity is to do less work

Lessons

Modelling Scalability

- Coordination is expensive

- Express its costs with the Universal Scalability Law

- Consider randomized approximation and iterative partitioning

Thank you!

@_emfree_
honeycomb.io

Special thanks to Rachel
Perkins, Emily Nakashima,
Rachel Fong and Kavya Joshi!

References

Performance Modeling and Design of Computer Systems: Queueing
Theory in Action, Mor Harchol-Balter

A General Theory of Computational Scalability Based on Rational
Functions, Neil J. Gunther

The Power of Two Choices in Randomized Load Balancing,
Michael David Mitzenbacher

Sparrow: Distributed, Low Latency Scheduling,
Kay Ousterhout, Patrick Wendell, Matei Zaharia, Ion Stoica

Scuba: Diving Into Data at Facebook, Lior Abraham et. al.

