
Pontoon An Enterprise grade serverless framework using Kubernetes

Kumar Gaurav, Director R&D, VMware

Mageshwaran R, Staff Engineer R&D, VMware

Serverless: a quick review

• Enables running back end logic with out managing server applications

• Mostly event driven and instantaneously scalable

• Constraints
• Ephemeral – should start, process and finish in some time (Calls for small startup time)

• Stateless – shares no process state across executions (Calls for external persistence / state management)

• Typical Use cases
• Scheduled tasks,

• Dynamic and burstable workloads,

• Message driven applications

projected CAGR of 32.7%

Agenda

• What is our need

• Requirements

• Pontoon

• Architecture

• Capabilities

• Operational aspects

• Take away

• Demo

What is our need?

We work for VMware Cloud Services

• We ship our binaries in Docker container packaging,
and use Kubernetes as the orchestration layer

• Run on AWS cloud and as well as vSphere private cloud AWS Lambda

• By April’17, we needed a framework to run scheduled & on-demand jobs

• We evaluated popular frameworks, but finally built one (Pontoon)
on top of Kubernetes Jobs in about 2-3 eng months effort

* Solve for self * My company pays me for solving business problem only

Our
Requirements

Serverless Functions

1. Function is a process

2. Finite

3. Stateless

4. JVM, Python and Go (maybe!)

5. Runtime: few sec to few min

6. Idempotent

Our
Requirements

Serverless Framework

1. Native to Kubernetes

2. Persist logs

3. Functions can access other k8s resources

4. Retry limit, and max parallelism

5. Should be highly available

6. Visibility on function execution and status

7. At least once execution

8. “Register” function by API

9. Not needed: “chaining” of functions

Requirement translation

Other
services Shared

persistence

Concurrent
Job Store

- Prioritized consumption
- Update on progress

Orchestrator
with Scheduler

(now+cron)

- Add jobs to queue
- Remove completed
- Error handling policy- Execute job, persist output

- Interact with other live services

Other
services
Other live
services

* How to package
function?
* Spec for developers?

REST CRUD APIs
(for developers)

Disk backed
(priority) queue

Business
Logic
“worker”

Init
cont
ainer

Init
cont
ainer

Init
cont
ainer

Fitment of existing frameworks

Requirements Iron IO Functions Fabric8 Funktion Fission OpenWhisk

K8S Integration Yes, not native K8s only K8s only Yes, not native

Access to K8S
cluster resources

No Yes Yes No

Language agnostic Yes, Container Yes, Container Yes, Environment Yes, Container

Visibility on event
queue/ monitoring

No Yes No -

Persisted Logs No Yes Yes -

Cons Error handling;
k8s network;
Logs

Stores code in
config map;
SANDBOXED

JVM not supported Deploy on k8s
wasn’t fully
supported at time
of eval

This might be a bit outdated. Comprehensive study was done in early April 2017. New entrants: kubeless

CLOSEST MATCH

Enters Pontoon

Pontoons are airtight hollow structures,

similar to pressure vessels, designed to

provide buoyancy in water. Their principal

applications are in watercraft hulls and

aircraft floats, floating pier and pontoon

bridge construction, and marine

engineering applications such as salvage.
-- wikipedia

Light weight. Purpose built. Versatile.

https://en.wikipedia.org/wiki/Pressure_vessel
https://en.wikipedia.org/wiki/Buoyancy
https://en.wikipedia.org/wiki/Hull_(watercraft)
https://en.wikipedia.org/wiki/Floating_dock_(jetty)
https://en.wikipedia.org/wiki/Pontoon_bridge
https://en.wikipedia.org/wiki/Marine_salvage

Pontoon - Design choices

• Do not interact with docker daemon directly
• Need to handle image cleanup

• Might not work with K8S cluster monitoring tools

• Requires custom CLI for monitoring

• Embrace Kubernetes Job & Deployments
• Cold startup - Job

• Ability to control parallel executions

• Easier optimization using no. of completions

• Deployment - Warm nodes (not yet done)

• We don’t aspire for pure play FaaS. If you were thinking of enhanced auth/security

Pontoon -
Architecture

POST /api/v1/function/{app}
{

“name” : “CostEngine”,
“image” : “**/pontoon/cost-engine:1-41-12”,
"timeout": 30,
"memory": 1500,
"maxRetryCount": 3,
"priority": 1,
“parallelism” : 3

}POST /api/v1/event/{app}/{function}
[“Event payload in JSON format”]

Find the pending events in Queue and create a job
with completion & parallelism count

Function Reporter
• GET localhost:8000/input
• POST localhost:8000/done or /fail

• Functions can be grouped as App

• Ability to pass configuration’s as headers and
env

• Configurable Retry, max parallelism

• Cron based schedule support

• Integration with Open tracing

Capabilities

• Deployment using a single yaml

• Integrate your Logging solutions

• Event Audit – Configurable history

• Monitoring UI

• Duplicate event detection (configurable)

• Runs everywhere on K8S

• Unit testability using HTTP Mock Server

Operational
aspects

A quick DEMO!

Monitoring: Logs

Monitoring: Status reporting

Monitoring: Job Execution

Our Experience – take away

• Look at your requirements first

• Then scout community projects

• If needed, build your own: it’s easy!

• Watch out for scale issues not in function but on its dependency
(DB, other services etc.,)

• Doesn’t mean no-ops. Needs observability & monitoring

• Product becomes more robust
– transition to 12factor app Saves us ~1,000 USD a day

Expect 10X more scale by end-2018

Next: Pontoon running on AWS Spot Instances

Questions ???

