
Planes, Raft, and Pods

A Tour of Distributed Systems Within
Kubernetes

@boluptuous

Distributed Systems?

“Distributed programming is the art of
solving the same problem that you can
solve on a single computer using multiple
computers.”

- Mikito Takada

?

“Open-source platform for automating
deployment, scaling, and operations of
application containers around clusters of
hosts, providing container-centric
infrastructure”

- Kubernetes Documentation

???????

Flexible platform for
running containerized

apps!

How does Kubernetes
leverage distributed

systems?

What is a container?

Pod = 1 or more containers

Deployments manage pods

Kubernetes is distributed

Master Components
- etcd
- API Server
- Controllers
- Scheduler

Node Components
- Kubelet
- Kube-proxy
- Container runtime

etcd!

multiple etcds > one etcd

Why etcd?

etcd is designed for “large scale distributed
systems… that never tolerate split brain
behavior and are willing to sacrifice
availability” to achieve it

- etcd Documentation

Simple interface hides
complex problems

Let’s look at a Not Raft system

A
Value: ?

B
Value: ?

C
Value: ?

Nodes receive requests, write to disk, and then
broadcast new value to all other nodes

What happens if there’s
multiple updates to the
value at the same time?

A
Value: X

B
Value: X

C
Value: X

A
Value: X

B
Value: X

C
Value: X

Client 1 tells Node A that the new value is Y
Client 2 tells Node B that the new value is Z

A
Value: Y

B
Value: Z

C
Value: X

Node A writes Y to disk
Node B writes Z to disk

A
Value: Z

B
Value: Y

C
Value: Z

Node A broadcasts the new value Y
Node B broadcasts the new value Z

(we assume A’s messages arrive before B’s)

New Scenario!

A
Value: X

B
Value: X

C
Value: X

A
Value: X

B
Value: X

C
Value: X

Cluster undergoes a network partition!
C can’t talk to A or B
A or B can’t talk to C

A
Value: Y

B
Value: Y

C
Value: X

Client updates the value to Y
C doesn’t find out because messages are dropped

A
Value: Y

B
Value: Y

C
Value: X

C comes back but thinks the value is still X

Consensus requires
coordination

Raft = consensus algorithm
for managing replicated

log

Elected leader is put in
charge of managing the log

Three States!
● Leader
● Follower
● Candidate

One leader per term

Leader sends heartbeat
messages

What happens if a follower
doesn’t get a heartbeat?

Election time!

In the game of Raft
leadership elections, you

win or you lose.

1. Write goes to leader
2. Leader appends command to log
3. Tells other servers via RPC to

append it to their logs (followers
will say no if they’re behind)

4. Once majority append, leader
commits

5. Leader tells nodes in subsequent
messages of the last committed
entry

6. Nodes commit

Solves problems in our bad system

Consistency and partition-tolerance
are achieved through requiring a

majority of nodes to act

Further Raft Reading
● The Raft Paper
● The Secret Lives of Data

(Raft Visualization)

Controller = loop that watches
cluster state and makes changes to

ensure we keep the desired state

Replica Set Controller makes sure
there’s a given number of pods

running at any time

Deployment controller manages the
whole deployment process of your

app

Scheduler watches for unscheduled pods
and assigns them to a given node

The Scheduling Algorithm
1. Filter out nodes that aren’t desired

or not a great fit
2. Rank the remaining nodes
3. Pick the top ranked node

Step 1: Filter Against Predicates
● HostName
● MatchNodeSelector
● InterPodAffinityMatches
● PodToleratesNodeTaints

More Predicates!
● PodFitsHostPort
● PodFitsResources
● CheckNodeMemoryPressure
● CheckNodeDiskPressure
● CheckNodeCondition

Ranking applies a series of
weighted priority functions
that return a score (higher

score is more desirable)

Functions are run against
each node, added up, and
the node with the highest

score is the winner!

Some Ranking Functions
● LeastRequestedPriority
● BalancedResourceAllocation
● SelectorSpreadPriority
● ImageLocalityPriority
● NodeAffinityPriority
● TaintTolerationPriority

What happens when we
submit a deployment to

Kubernetes?

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: hello-kubecon-deployment
spec:
 replicas: 3
 template:
 metadata:
 labels:
 app: hello-kubecon
 spec:
 containers:
 - name: hello-kubecon
 image: boingram/hellohttp:latest
 ports:
 - containerPort: 8080

kind: Service
apiVersion: v1
metadata:
 name: hello-kubecon-service
spec:
 selector:
 app: hello-kubecon
 ports:
 - protocol: TCP
 port: 80
 targetPort: 8080
 type: LoadBalancer

How do we submit our
deployment? Kubectl!

What We Expect
1. We create deployment
2. Deployment creates a replica set
3. Replica set creates three pods
4. Our scheduler schedules those

three pods
5. Kubelet will run scheduled pods

What actually happens...

involvedObject:
 kind: Deployment
 name: hello-kubecon-deployment

message: Scaled up replica set
hello-kubecon-deployment-2009686459 to 3

reason: ScalingReplicaSet
source:
 component: deployment-controller

involvedObject:
 kind: ReplicaSet
 name: hello-kubecon-deployment-2009686459

message: 'Created pod:
hello-kubecon-deployment-2009686459-nwc7k'

reason: SuccessfulCreate
source:
 component: replicaset-controller

involvedObject:
 kind: Pod
 name: hello-kubecon-deployment-2009686459-nwc7k

message: Successfully assigned
hello-kubecon-deployment-2009686459-nwc7k to
gke-cluster-1-default-pool-ed78e24c-33jg

reason: Scheduled
source:
 component: default-scheduler

involvedObject:
 kind: ReplicaSet
 name: hello-kubecon-deployment-2009686459

message: 'Created pod:
hello-kubecon-deployment-2009686459-03hfh'

reason: SuccessfulCreate
source:
 component: replicaset-controller

involvedObject:
 kind: Pod
 name: hello-kubecon-deployment-2009686459-03hfh

message: Successfully assigned
hello-kubecon-deployment-2009686459-03hfh to
gke-cluster-1-default-pool-ed78e24c-33jg

reason: Scheduled
source:
 component: default-scheduler

involvedObject:
 kind: ReplicaSet
 name: hello-kubecon-deployment-2009686459

message: 'Created pod:
hello-kubecon-deployment-2009686459-05kv9'

reason: SuccessfulCreate
source:
 component: replicaset-controller

involvedObject:
 kind: Pod
 name: hello-kubecon-deployment-2009686459-05kv9

message: Successfully assigned
hello-kubecon-deployment-2009686459-05kv9 to
gke-cluster-1-default-pool-ed78e24c-33jg

reason: Scheduled
source:
 component: default-scheduler

involvedObject:
 fieldPath: spec.containers{hello-kubecon}
 kind: Pod
 name: hello-kubecon-deployment-2009686459-05kv9

message: pulling image "boingram/hellohttp:latest"

reason: Pulling
source:
 component: kubelet
 host: gke-cluster-1-default-pool-ed78e24c-33jg

involvedObject:
 fieldPath: spec.containers{hello-kubecon}
 kind: Pod
 name: hello-kubecon-deployment-2009686459-03hfh

message: pulling image "boingram/hellohttp:latest"

reason: Pulling
source:
 component: kubelet
 host: gke-cluster-1-default-pool-ed78e24c-33jg

involvedObject:
 fieldPath: spec.containers{hello-kubecon}
 kind: Pod
 name: hello-kubecon-deployment-2009686459-nwc7k

message: pulling image "boingram/hellohttp:latest"

reason: Pulling
source:
 component: kubelet
 host: gke-cluster-1-default-pool-ed78e24c-33jg

involvedObject:
 fieldPath: spec.containers{hello-kubecon}
 kind: Pod
 name: hello-kubecon-deployment-2009686459-03hfh

message: Successfully pulled image
"boingram/hellohttp:latest"

reason: Pulled
source:
 component: kubelet
 host: gke-cluster-1-default-pool-ed78e24c-33jg

involvedObject:
 fieldPath: spec.containers{hello-kubecon}
 kind: Pod
 name: hello-kubecon-deployment-2009686459-03hfh

message: Created container

reason: Created
source:
 component: kubelet
 host: gke-cluster-1-default-pool-ed78e24c-33jg

involvedObject:
 fieldPath: spec.containers{hello-kubecon}
 kind: Pod
 name: hello-kubecon-deployment-2009686459-03hfh

message: Started container

reason: Started
source:
 component: kubelet
 host: gke-cluster-1-default-pool-ed78e24c-33jg

involvedObject:
 fieldPath: spec.containers{hello-kubecon}
 kind: Pod
 name: hello-kubecon-deployment-2009686459-05kv9

message: Successfully pulled image
"boingram/hellohttp:latest"

reason: Pulled
source:
 component: kubelet
 host: gke-cluster-1-default-pool-ed78e24c-33jg

involvedObject:
 fieldPath: spec.containers{hello-kubecon}
 kind: Pod
 name: hello-kubecon-deployment-2009686459-05kv9

message: Created container

reason: Created
source:
 component: kubelet
 host: gke-cluster-1-default-pool-ed78e24c-33jg

involvedObject:
 fieldPath: spec.containers{hello-kubecon}
 kind: Pod
 name: hello-kubecon-deployment-2009686459-05kv9

message: Started container

reason: Started
source:
 component: kubelet
 host: gke-cluster-1-default-pool-ed78e24c-33jg

involvedObject:
 fieldPath: spec.containers{hello-kubecon}
 kind: Pod
 name: hello-kubecon-deployment-2009686459-nwc7k

message: Successfully pulled image
"boingram/hellohttp:latest"

reason: Pulled
source:
 component: kubelet
 host: gke-cluster-1-default-pool-ed78e24c-33jg

involvedObject:
 fieldPath: spec.containers{hello-kubecon}
 kind: Pod
 name: hello-kubecon-deployment-2009686459-nwc7k

message: Created container

reason: Created
source:
 component: kubelet
 host: gke-cluster-1-default-pool-ed78e24c-33jg

involvedObject:
 fieldPath: spec.containers{hello-kubecon}
 kind: Pod
 name: hello-kubecon-deployment-2009686459-nwc7k

message: Started container

reason: Started
source:
 component: kubelet
 host: gke-cluster-1-default-pool-ed78e24c-33jg

We did it!

Things We’ve Done!
● Look at Kubernetes components
● Shown how it handles distributed

state
● Dove into how we reconcile state

and schedule pods
● Traced a deployment through the

system

