
Persistent Storage with Kubernetes in Production
Which solution and why?

Kubecon + CloudNativeCon, Dec 8, 2017

Cheryl Hung, Product Manager

© StorageOS Ltd.



Cheryl
Product manager, StorageOS
CNCF Ambassador
Slides at oicheryl.com

2© StorageOS Ltd.



Objectives

•Why is state so tricky?
•How should I compare storage?
•What storage should I use with Kubernetes?

3

@oicheryl

© StorageOS Ltd.



Objectives

•Why is state so tricky?
•How should I compare storage?
•What storage should I use with Kubernetes?

Anti-objective:
•Should I use a database/message queue/key-value 
store... for my app?

4

@oicheryl

© StorageOS Ltd.



 

 

Why is state so
tricky?

5© StorageOS Ltd.



Why do I need storage? @oicheryl

© StorageOS Ltd.



7

@oicheryl

© StorageOS Ltd.

Why do I need storage?



First challenge: No pet storage

8

@oicheryl

© StorageOS Ltd.



Second challenge: Data needs to follow

9

@oicheryl

© StorageOS Ltd.



Third challenge: Humans are fallible

10

@oicheryl

© StorageOS Ltd.



 

 

How should I compare 
storage?

11© StorageOS Ltd.



From the CNCF Landscape @oicheryl

© StorageOS Ltd.



@oicheryl



14

Eight Principles of 
Cloud Native Storage



What is Cloud Native?

Horizontally scalable
No single point of failure
Resilient and self healing
Minimal operator overhead
Decoupled from the underlying platform

15

@oicheryl

© StorageOS Ltd.



Eight principles of Cloud Native Storage

Storage should be presented to and consumed by 
applications, not by operating systems or 
hypervisors

1 Application 
centric

@oicheryl

© StorageOS Ltd.



Eight principles of Cloud Native Storage

Storage should be presented to and consumed by 
applications, not by operating systems or 
hypervisors

The storage platform should be able to run 
anywhere. Upgrades and scaling is non-disruptive.

1 Application 
centric

2 Platform 
agnostic

@oicheryl

© StorageOS Ltd.



Eight principles of Cloud Native Storage

Storage should be presented to and consumed by 
applications, not by operating systems or 
hypervisors

The storage platform should be able to run 
anywhere. Upgrades and scaling is non-disruptive.

Storage resources should be declared and 
composed just like all other resources required by 
applications and services.

1 Application 
centric

2 Platform 
agnostic

3 Declarative/ 
composable

@oicheryl

© StorageOS Ltd.



Eight principles of Cloud Native Storage

Storage should be presented to and consumed by 
applications, not by operating systems or 
hypervisors

The storage platform should be able to run 
anywhere. Upgrades and scaling is non-disruptive.

Storage resources should be declared and 
composed just like all other resources required by 
applications and services.

Storage resources and services should be easy 
to be provisioned, consumed, moved and 
managed via an API.

1 Application 
centric

2 Platform 
agnostic

3 Declarative/ 
composable

4 API driven

@oicheryl

© StorageOS Ltd.



Eight principles of Cloud Native Storage

5 Natively 
secure

Storage services should integrate and inline 
security features such as encryption and RBAC. 

@oicheryl

© StorageOS Ltd.



Eight principles of Cloud Native Storage

5 Natively 
secure

6 Agile

Storage services should integrate and inline 
security features such as encryption and RBAC. 

The platform should be able to move application 
data between locations, dynamically resize and 
snapshot volumes.

@oicheryl

© StorageOS Ltd.



Eight principles of Cloud Native Storage

5 Natively 
secure

6 Agile

7 Performant

Storage services should integrate and inline 
security features such as encryption and RBAC. 

The platform should be able to move application 
data between locations, dynamically resize and 
snapshot volumes.

The storage platform should offer deterministic 
performance in complex distributed environments.

@oicheryl

© StorageOS Ltd.



Eight principles of Cloud Native Storage

5 Natively 
secure

6 Agile

7 Performant

8 Consistently 
available

Storage services should integrate and inline 
security features such as encryption and RBAC. 

The platform should be able to move application 
data between locations, dynamically resize and 
snapshot volumes.

The storage platform should offer deterministic 
performance in complex distributed environments.

The storage platform should ensure high 
availability, durability, consistency with a 
predictable, proven data model.

@oicheryl

© StorageOS Ltd.



 

 

What storage should I 
use with Kubernetes?

24© StorageOS Ltd.



@oicherylKubernetes Storage Model: Persistent Volumes and Claims

© StorageOS Ltd.

Registers PVs in the pool

Pool of Persistent Volumes

NFS
PV

iSCSI
PV

NFS
PV

GCE
PV

Developer

Administrator



@oicherylKubernetes Storage Model: Persistent Volumes and Claims

© StorageOS Ltd.

Registers PVs in the pool

Claims a PV from the pool
claim

Pool of Persistent Volumes

NFS
PV

iSCSI
PV

NFS
PV

GCE
PV

Developer

Administrator

Developer



@oicherylKubernetes Storage Model: Persistent Volumes and Claims

© StorageOS Ltd.

claim

Registers PVs in the pool

Claims a PV from the pool

References claim in pod

claim

Pool of Persistent Volumes

NFS
PV

iSCSI
PV

NFS
PV

Pod

GCE
PV

Developer

Administrator

Developer



@oicherylDynamic provisioning with Storage Classes

© StorageOS Ltd.

Registers Storage Classes

Storage Classes

NS
PVslowfast

Administrator



@oicherylDynamic provisioning with Storage Classes

© StorageOS Ltd.

Registers Storage Classes

claim

Storage Classes

NS
PVslowfast

Administrator

Developer

Claims a PV from the pool



@oicherylDynamic provisioning with Storage Classes

© StorageOS Ltd.

claim

Registers Storage Classes

References claim in pod

claim

Storage Classes

NS
PV

Pod

slowfast

Administrator

Developer

Claims a PV from the pool

fast
PV



@oicherylMeet Jane

•A DevOps engineer at a media 
company

•Migrating client Wordpress websites 
into Kubernetes

•Wants to follow the cloud native 
principles

© StorageOS Ltd.



Proliferating plugins

© StorageOS Ltd.

@oicheryl



Key information

1. What is my use case?

2. What are my performance requirements?

3. How should developers access storage?

4. Where is the storage deployed and managed?

@oicheryl

© StorageOS Ltd.



1. What is my use case?

34

App Binaries App data Config Backup

@oicheryl

© StorageOS Ltd.



2. What are my performance requirements?

35

App Binaries
Ephemeral

App data
Latency, 

availability, 
performant

Config
Shared

Backup
Cost efficient, 

cloud

@oicheryl

© StorageOS Ltd.



@oicheryl3. How should developers access storage?

© StorageOS Ltd.

Block
Fixed-size ‘blocks’ in 
a rigid arrangement 
– ideal for enterprise 

databases

File
‘Files’ in 

hierarchically nested 
‘folders’ – ideal for 
active documents

Object
‘Objects’ in scalable 
‘buckets’ – ideal for 

unstructured big 
data and archiving



4. Where is the storage deployed and managed?

●CO supports one or more Interfaces to interact 
with the Storage System

●Storage System can (A) support control-plane 
interface API directly and interact directly with the 
CO or can (B) interact with the CO via an API 
framework layer or other Tools.

●Storage system must support the ability to 
provision and consume (C) volumes through a 
standard interface to be considered Interoperable

●Workloads interact (C) with storage systems over 
various data-plane methods

Cluster Orchestrators

Control-Plane Interfaces
(CSI, DVDI, Flex, Native) 

Storage SystemsFrameworks and Tools

AB

B

Workloads

C

© StorageOS Ltd.

@oicheryl



@oicherylJane’s storage requirements

•Database location, credentials
•Postgres database for application 
data

•User uploaded media
•Database and website backups

© StorageOS Ltd.



Database location and credentials

© StorageOS Ltd.

@oicheryl

1. Use case? Configuration
2. Performance requirements? Shared across instances
3. Access? Kubernetes provides Secrets for sensitive data 

such as passwords, and ConfigMap for arbitrary config. Both 
can be accessed by the application through environment 
variables

4. Deployed and managed? Tight integration with Kubernetes



User uploaded media

© StorageOS Ltd.

@oicheryl

1. Use case? Shared media
2. Performance requirements? Large blobs of data, shared 

across pods
3. Access? Shared filesystem
4. Deployed and managed?

Cloud: Managed NFS, or object store if the app can support it
On prem: Distributed FS (but please not NFS!)



Database and website backup

© StorageOS Ltd.

@oicheryl

1. Use case? Backup and archival
2. Performance requirements? Durability, cost, snapshots
3. Access? Object store
4. Deployed and managed?

Cloud: Managed object store, long term cold storage
On prem: Object store, NAS



Postgres for application data

© StorageOS Ltd.

@oicheryl

1. Use case? Transactional database
2. Performance requirements? High availability, low latency, 

deterministic performance
3. Access? Database connector
4. Deployed and managed?

Cloud: Cloud volumes (watch out for attach/detach times, 
compliance) or managed db (limited offerings)
On prem: Software defined storage



@oicheryl

© StorageOS Ltd.



Software-defined storage @oicheryl

© StorageOS Ltd.



45

To Recap…



Evaluating storage

1 Application 
centric

2 Platform 
agnostic

3 Declarative/ 
composable

4 API driven

5 Natively 
secure

6 Agile

7 Performant

8 Consistently 
available

© StorageOS Ltd.

@oicheryl

1. Use case?
2. Performance 

requirements?
3. Access?
4. Deployed and 

managed?



CSI launched as alpha in Kubernetes 1.9 @oicheryl

© StorageOS Ltd.



Browser-based demo
• my.storageos.com/main/tutorials

Quickstart
• storageos.com/kubernetes

We’re hiring! London and NYC roles
• storageos.com/careers

@oicherylStorageOS resources

© StorageOS Ltd.

http://my.storageos.com/main/tutorials
https://storageos.com/kubernetes


 

 

Thanks
Slides at oicheryl.com

© StorageOS Ltd.



What is StorageOS?

© StorageOS Ltd.

@oicheryl



What is StorageOS?

© StorageOS Ltd.

@oicheryl

Platform 
agnostic

Horizontally 
scalable

Database (ie. 
block)

Docker/K8s 
integration

High 
availability



StorageOS architecture @oicheryl

© StorageOS Ltd.



StorageOS architecture

© StorageOS Ltd.

@oicheryl

StorageOS is conceptually pretty simple; it’s a virtualization layer on top of any 
commodity or cloud storage. It’s deployed as one container per node, similar to 
a DaemonSet.

1. Nodes contribute local block storage to the storage pool.
2. Virtual volumes (block storage formatted with a standard filesystem) are 

created using the StorageOS volume plugin.
3. Any pods can mount the virtual volumes from any node. If a pod is 

rescheduled to a different node, StorageOS simply redirects reads and 
writes so the pod can continue to access the storage.

https://hub.docker.com/r/storageos/node/
https://kubernetes.io/docs/concepts/storage/storage-classes/#storageos


StorageOS architecture

© StorageOS Ltd.

@oicheryl

It’s designed to scale horizontally by adding more nodes. New nodes contribute 
their storage into the storage pool, or, if they don’t have storage themselves, 
can access storage on other nodes.



High availability with StorageOS 

© StorageOS Ltd.

@oicheryl



High availability with StorageOS 

© StorageOS Ltd.

@oicheryl

StorageOS uses a hybrid master/replica architecture, where replicas are 
distributed across nodes.

Replication is very simple in StorageOS. Volume D is created with two replicas. 
StorageOS creates the replicas (D2, D3) and schedules them to two different 
nodes (N3, N5). Incoming writes to D are synchronously replicated to D2 and 
D3, ie. writes are not persisted until acknowledged by both replicas.

If N1 fails, one of D2 or D3 gets promoted to master, providing instant failover 
and no interruption of service. StorageOS creates and resyncs a new replica on 
N2 or N4 in the background.



More reading

Download the technical architecture overview at 
storageos.com/storageos-platform-architecture-overview.

Try out in your browser, with zero downloads or configuration: 
my.storageos.com/main/tutorials

Full documentation at docs.storageos.com.

https://storageos.com/storageos-platform-architecture-overview
http://my.storageos.com/main/tutorials
https://docs.storageos.com/

