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Objectives

•Why is state so tricky?
•How should I compare storage?
•What storage should I use with Kubernetes?
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Objectives

•Why is state so tricky?
•How should I compare storage?
•What storage should I use with Kubernetes?

Anti-objective:
•Should I use a database/message queue/key-value 
store... for my app?
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tricky?
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Why do I need storage? @oicheryl
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Why do I need storage?



First challenge: No pet storage
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Second challenge: Data needs to follow
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Third challenge: Humans are fallible
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How should I compare 
storage?
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From the CNCF Landscape @oicheryl
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Eight Principles of 
Cloud Native Storage



What is Cloud Native?

Horizontally scalable
No single point of failure
Resilient and self healing
Minimal operator overhead
Decoupled from the underlying platform
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Eight principles of Cloud Native Storage

Storage should be presented to and consumed by 
applications, not by operating systems or 
hypervisors

1 Application 
centric
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Eight principles of Cloud Native Storage

Storage should be presented to and consumed by 
applications, not by operating systems or 
hypervisors

The storage platform should be able to run 
anywhere. Upgrades and scaling is non-disruptive.

Storage resources should be declared and 
composed just like all other resources required by 
applications and services.

Storage resources and services should be easy 
to be provisioned, consumed, moved and 
managed via an API.

1 Application 
centric

2 Platform 
agnostic

3 Declarative/ 
composable

4 API driven

@oicheryl
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Eight principles of Cloud Native Storage

5 Natively 
secure

Storage services should integrate and inline 
security features such as encryption and RBAC. 
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Eight principles of Cloud Native Storage

5 Natively 
secure

6 Agile

Storage services should integrate and inline 
security features such as encryption and RBAC. 

The platform should be able to move application 
data between locations, dynamically resize and 
snapshot volumes.
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Eight principles of Cloud Native Storage

5 Natively 
secure

6 Agile

7 Performant
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The storage platform should offer deterministic 
performance in complex distributed environments.
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Eight principles of Cloud Native Storage

5 Natively 
secure

6 Agile

7 Performant

8 Consistently 
available

Storage services should integrate and inline 
security features such as encryption and RBAC. 

The platform should be able to move application 
data between locations, dynamically resize and 
snapshot volumes.

The storage platform should offer deterministic 
performance in complex distributed environments.

The storage platform should ensure high 
availability, durability, consistency with a 
predictable, proven data model.
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What storage should I 
use with Kubernetes?
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@oicherylKubernetes Storage Model: Persistent Volumes and Claims
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@oicherylKubernetes Storage Model: Persistent Volumes and Claims
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Claims a PV from the pool

References claim in pod
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@oicherylDynamic provisioning with Storage Classes
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@oicherylDynamic provisioning with Storage Classes
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@oicherylMeet Jane

•A DevOps engineer at a media 
company

•Migrating client Wordpress websites 
into Kubernetes

•Wants to follow the cloud native 
principles
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Proliferating plugins
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Key information

1. What is my use case?

2. What are my performance requirements?

3. How should developers access storage?

4. Where is the storage deployed and managed?

@oicheryl
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1. What is my use case?
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App Binaries App data Config Backup
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2. What are my performance requirements?

35

App Binaries
Ephemeral

App data
Latency, 

availability, 
performant

Config
Shared

Backup
Cost efficient, 

cloud
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@oicheryl3. How should developers access storage?
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Block
Fixed-size ‘blocks’ in 
a rigid arrangement 
– ideal for enterprise 

databases

File
‘Files’ in 

hierarchically nested 
‘folders’ – ideal for 
active documents

Object
‘Objects’ in scalable 
‘buckets’ – ideal for 

unstructured big 
data and archiving



4. Where is the storage deployed and managed?

●CO supports one or more Interfaces to interact 
with the Storage System

●Storage System can (A) support control-plane 
interface API directly and interact directly with the 
CO or can (B) interact with the CO via an API 
framework layer or other Tools.

●Storage system must support the ability to 
provision and consume (C) volumes through a 
standard interface to be considered Interoperable

●Workloads interact (C) with storage systems over 
various data-plane methods

Cluster Orchestrators

Control-Plane Interfaces
(CSI, DVDI, Flex, Native) 

Storage SystemsFrameworks and Tools

AB

B

Workloads

C
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@oicherylJane’s storage requirements

•Database location, credentials
•Postgres database for application 
data

•User uploaded media
•Database and website backups
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Database location and credentials
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1. Use case? Configuration
2. Performance requirements? Shared across instances
3. Access? Kubernetes provides Secrets for sensitive data 

such as passwords, and ConfigMap for arbitrary config. Both 
can be accessed by the application through environment 
variables

4. Deployed and managed? Tight integration with Kubernetes



User uploaded media
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1. Use case? Shared media
2. Performance requirements? Large blobs of data, shared 

across pods
3. Access? Shared filesystem
4. Deployed and managed?

Cloud: Managed NFS, or object store if the app can support it
On prem: Distributed FS (but please not NFS!)



Database and website backup
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1. Use case? Backup and archival
2. Performance requirements? Durability, cost, snapshots
3. Access? Object store
4. Deployed and managed?

Cloud: Managed object store, long term cold storage
On prem: Object store, NAS



Postgres for application data
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1. Use case? Transactional database
2. Performance requirements? High availability, low latency, 

deterministic performance
3. Access? Database connector
4. Deployed and managed?

Cloud: Cloud volumes (watch out for attach/detach times, 
compliance) or managed db (limited offerings)
On prem: Software defined storage
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Software-defined storage @oicheryl
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To Recap…



Evaluating storage

1 Application 
centric

2 Platform 
agnostic

3 Declarative/ 
composable

4 API driven

5 Natively 
secure

6 Agile

7 Performant

8 Consistently 
available
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1. Use case?
2. Performance 

requirements?
3. Access?
4. Deployed and 

managed?



CSI launched as alpha in Kubernetes 1.9 @oicheryl
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Browser-based demo
• my.storageos.com/main/tutorials

Quickstart
• storageos.com/kubernetes

We’re hiring! London and NYC roles
• storageos.com/careers

@oicherylStorageOS resources
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http://my.storageos.com/main/tutorials
https://storageos.com/kubernetes
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What is StorageOS?
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What is StorageOS?
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Platform 
agnostic

Horizontally 
scalable

Database (ie. 
block)

Docker/K8s 
integration

High 
availability



StorageOS architecture @oicheryl
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StorageOS architecture
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StorageOS is conceptually pretty simple; it’s a virtualization layer on top of any 
commodity or cloud storage. It’s deployed as one container per node, similar to 
a DaemonSet.

1. Nodes contribute local block storage to the storage pool.
2. Virtual volumes (block storage formatted with a standard filesystem) are 

created using the StorageOS volume plugin.
3. Any pods can mount the virtual volumes from any node. If a pod is 

rescheduled to a different node, StorageOS simply redirects reads and 
writes so the pod can continue to access the storage.

https://hub.docker.com/r/storageos/node/
https://kubernetes.io/docs/concepts/storage/storage-classes/#storageos


StorageOS architecture
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It’s designed to scale horizontally by adding more nodes. New nodes contribute 
their storage into the storage pool, or, if they don’t have storage themselves, 
can access storage on other nodes.



High availability with StorageOS 
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High availability with StorageOS 
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StorageOS uses a hybrid master/replica architecture, where replicas are 
distributed across nodes.

Replication is very simple in StorageOS. Volume D is created with two replicas. 
StorageOS creates the replicas (D2, D3) and schedules them to two different 
nodes (N3, N5). Incoming writes to D are synchronously replicated to D2 and 
D3, ie. writes are not persisted until acknowledged by both replicas.

If N1 fails, one of D2 or D3 gets promoted to master, providing instant failover 
and no interruption of service. StorageOS creates and resyncs a new replica on 
N2 or N4 in the background.



More reading

Download the technical architecture overview at 
storageos.com/storageos-platform-architecture-overview.

Try out in your browser, with zero downloads or configuration: 
my.storageos.com/main/tutorials

Full documentation at docs.storageos.com.

https://storageos.com/storageos-platform-architecture-overview
http://my.storageos.com/main/tutorials
https://docs.storageos.com/

