
Local Ephemeral Storage
Resource Management
Jing Xu, Google

Agenda

• Motivation
• Resource management and model
• Storage Overview
• Local Ephemeral Storage Management
• Future Work

 jinxu@google.com
 jinxu@slack.kubernetes.com
 jingxu97@github.com

mailto:jinxu@google.com
mailto:jinxu@slack.kubernetes.com
mailto:jingxu97@github.com

Motivation

You might wonder
• why my container got killed?
• why my service is running slow?
• why machine keeps crashing?
• …

Resources are shared
• one container used up all cpu/memory
• one container produced lots of data

Resources Management Goals

• Efficient allocation of infrastructure resources.
• underutilized: cost-inefficiency.
• over-subscribed: failures, downtime, or missed SLAs.

• Resource and performance Isolation
• a workload should not use up all resources

• Guarantee system stability
• make sure critical system processes have enough resources

Resource in Kubernetes

• Resources
• requested by, allocated to, and consumed by a pod/container
• compressible (CPU) or incompressible (memory)

• Resource Model
• Desired State (specification)

• request: the amount of resources requested by a container/pod
• limit: an upper cap on the resources used by a container/pod

• Actual State
• actual resource usage

limit

request
usage

Resource Management

• Efficient allocation
• scheduler finds the “best” host that satisfies the resource request
• reduce the chance of resource overcommit

• Resource isolation
• makes sure the actual usage is under the resource limit
• actions could be throttle (CPU), kill container (memory) P1

P2

P4

P3

capacityrequest

Agenda

• Motivation
• Resource management and model
• Storage Overview
• Local Ephemeral Storage Management
• Future Work

Kubernetes Storage

• Ephemeral
• container: writable layer and logs
• pod: volumes (emptyDir, secrets, configMap,...)

• Persistent
• dedicated disks

• remote (network attached storage) or dedicated local disk
• explicit lifetime outlives containers/pods

• represented by volumes (PVC/PV)

ConsumersContent
Manager

 File
 Puller

 Web
 Server

Pod

emptyDir

PersistentVolumes (PV)

PVClaim

Local Ephemeral Storage Management

• Efficient allocation
• support local ephemeral storage as a resource

• Resource isolation
• avoid single pod or container uses up all disks

• System stability
• reserve certain amount of local storage for system use to make system

more stable

Container-level

User sets ephemeral-storage resource
requirements

Container
• request: guaranteed resource to the container
• limit: maximum resource allowed to use

• if container’s usage exceeds its limit, pod
will be evicted

apiVersion: v1
kind: Pod
metadata:
 name: frontend
spec:
 containers:
 - name: db
 image: mysql
 resources:
 requests:
 ephemeral-storage: "2Gi"
 limits:
 ephemeral-storage: "4Gi"
 - name: wp
 image: wordpress
 resources:
 requests:
 ephemeral-storage: "10Gi"
 limits:
 ephemeral-storage: "10Gi"

Pod-level
apiVersion: v1
kind: Pod
spec:
 containers:
 - name: db
 image: mysql
 resources:
 requests:
 ephemeral-storage: "2Gi"
 limits:
 ephemeral-storage: "4Gi"
 - name: wp
 image: wordpress
 resources:
 requests:
 ephemeral-storage: "10Gi"
 limits:
 ephemeral-storage: "10Gi"
 volumeMounts:
 - mountPath: /cache
 name: cache-volume
 volumes:
 - name: cache-volume
 emptyDir:

 sizeLimit: 20Gi

User can set ephemeral volume sizeLimit

• emptyDir volume sizeLimit
• If emptyDir volume usage exceeds its limit, pod

will be evicted

EmptyDir
Volume

container

container

lim
it

sizelim
it

lim
it

Pod-level

User cannot set explicit pod-level resources,
implicitly, sum of the containers’ resources

Pod
• Request: (2+10)Gi
• Limit: (4+10)Gi
• Usage: Usage_containers + Usage_emptyDir

EmptyDir
Volume

container

container

pod

apiVersion: v1
kind: Pod
spec:
 containers:
 - name: db
 image: mysql
 resources:
 requests:
 ephemeral-storage: "2Gi"
 limits:
 ephemeral-storage: "4Gi"
 - name: wp
 image: wordpress
 resources:
 requests:
 ephemeral-storage: "10Gi"
 limits:
 ephemeral-storage: "10Gi"
 volumeMounts:
 - mountPath: /cache
 name: cache-volume
 volumes:
 - name: cache-volume
 emptyDir:

 sizeLimit: 20Gi

lim
it

request

QoS Classes

Based on request/limit set, pods have different QoS

• Guaranteed
• 0 < request == limit
• pods are guaranteed to not be killed until exceeding the limit

• Burstable
• 0 < request < limit
• pod might use more resources than request, more likely to be killed

• Best effort
• no request/limit specified, lowest priority

• Allocation
• ∑Pod request < Capacity, but
• ∑Pod limit > Capacity
• ∑Pod usage > Capacity

• Disk Pressure
• reclaim resources: delete dead pods and unused images
• evict pods: choose victim pods in the order of their QoS

Node-level

Capacity

Capacity

Guaranteed Burstable

--eviction-hard="nodefs.available<1Gi"

--eviction-soft="nodefs.available<2Gi"

--eviction-soft-grace-period="nodefs.available=1m"

request request

Guaranteed Burstable

limit/usage limit/usage

Best-effort

Best-effort

usage

System processes also compete resources with user pods

• Allocatable resource
• how much resources can be allocated to users’ pods
• allocatable = capacity - reserved (system overhead)

• How much to reserve?
•
• roughly proportional to capacity

• kubelet usage: O(#Pods)

Node-level

Allocatable

Capacity

P3P1 P2 System
Overhead

Reserved
overhead = Node Usage - ∑Pod Usage

• Scheduling
• allocatable is sufficient for the request
• constraints: ∑Pod request < Allocatable

• Eviction
• make sure guaranteed reserved resources
• evict if ∑Pod usage > Allocatable

Node-level Allocatable

Allocatable

Capacity

P1 P2 System
Overhead

Reserved

Allocatable

Capacity

P1 System
Overhead

Reserved

P2

Eviction Policy

• Pod priority
• alpha feature in release 1.8
• the importance of a Pod relative to other Pods.

• Eviction policy
• evict pods where usage > requests
• rank pods by priority
• rank pods by usage-requests

apiVersion: v1
kind: Pod
spec:
 containers:
 - name: db
 image: mysql
 priorityClassName: high-priority

apiVersion:
scheduling.k8s.io/v1alpha1
kind: PriorityClass
metadata:
 name: high-priority
value: 1000000
globalDefault: false
description: "This priority class
should be used for XYZ service pods
only."

Namespace-level

How do teams/groups share resources?

• Namespace
• partition resources into a logically named groups
• ability to specify resource constraints for each group

namespace ns

Capacity

Capacity

p1 p2 p4

ns

p5 p6p3

Namespace-level Resource

• Quota
• resource isolation among namespaces
• quota object specifies total requests/limits

in namespace
• ∑Pod request <= request quota
• ∑Pod limit <= limit quota

During pod creation, quota is checked against the resource requests/limits

apiVersion: v1
kind: ResourceQuota
metadata:
 name: demo
spec:
 hard:
 requests.ephemeral-storage: 10Gi
 limits.ephemeral-storage: 15Gi

Namespace-level

• LimitRange
• Configure default requests and limits for a namespace

apiVersion: v1
kind: LimitRange
metadata:
 name: limit-range
spec:
 limits:
 - default:
 ephemeral-storage: 1Gi
 defaultRequest:
 ephemeral-storage: 256Mi
 type: Container

Summary

• Support local storage as first-class resource
• able to set resource limit/request

• Support local storage resource management at
• container/pod-level: resource allocation and limitation
• node-level: allocatable to ensure system stability
• namespace-level: support isolation among teams

Future Work

● Disk IO isolation
● Extend Metrics API to include local ephemeral storage
● Pod-level resource request/limits
● Dynamic resource management

○ static resource setting might not be appropriate
○ resource requirements might change dynamically
○ system process resource consumption might change

Acknowledgement

Kubernetes team work
• Saad Ali, Michelle Au, Cheng Xing, David Zhu (Storage Team)
• Vishnu Kannan, David Ashpole, Tim Allclair, …

Community Contributor
• Nick Ren

Resource Management

• Efficient allocation
• scheduler finds the “best” host that satisfies the resource request

• Resource isolation
• kubelet monitors the resource usage, and makes sure the actual usage

is under the resource limit
• actions could be throttle, kill container, evict pod

• System Stability
• reserve resources for system processes
• evict pods if allocatable is not enough for all running pods

P1

P2

P4

P3

Eviction

• Order
• best effort: consume the most of the starved resource are failed first
• burstable: pods that consume the greatest amount of the starved

resource relative to their request for that resource are killed first
• guaranteed: pods that consume the greatest amount of the starved

resource relative to their request are killed first

