wr

a

KubeCon

—— North America 2017 ——

Local Ephemeral Storage
Resource Management

Jing Xu, Google

ARRRS] ENRSER RS RN RN RN RS RS BN KIS
REAS [EIERN EEN Ees OSSR N RN SR T RS 0 TUEE 0 EEER

Motivation

Resource management and model
Storage Overview
Local Ephemeral Storage Management

Future Work
Go g|€ jinxu@google.com
¥> linxu@slack.kubernetes.com
) GitHub 1iNaxu97@ithub.com

mailto:jinxu@google.com
mailto:jinxu@slack.kubernetes.com
mailto:jingxu97@github.com

Motivation

An ocean of
user containers

You might wonder ')
why my container got killed?
EEEEEEEEEE why my service is running slow? =l &l
n why machine keeps crashing?
Resources are shared
one container used up all cpu/memory e o o=
one container produced lots of data m - .-
- N H

4

Scheduled and packed
dynamically onto nodes

Resources Management Goals

Efficient allocation of infrastructure resources.
underutilized: cost-inefficiency.
over-subscribed: failures, downtime, or missed SLAs.

Resource and performance Isolation
a workload should not use up all resources

Guarantee system stability
make sure critical system processes have enough resources

Resource in Kubernetes

Resources
requested by, allocated to, and consumed by a pod/container
compressible (CPU) or incompressible (memory)

= | limit
Resource Model
Desired State (specification) usage
request: the amount of resources requested by a container/pod f\/\f

limit: an upper cap on the resources used by a container/pod

Actual State

actual resource usage

Resource Management

Efficient allocation
scheduler finds the “best” host that satisfies the resource request
reduce the chance of resource overcommit

Resource isolation

makes sure the actual usage is under the resource limit ——
actions could be throttle (CPU), kill container (memory) . .
al -/

Storage Overview
Local Ephemeral Storage Management
Future Work

Kubernetes Storage

Content
Manager

2 N

.2
File Web
Puller Server

Consumers

Ephemeral
container: writable layer and logs
pod: volumes (emptyDir, secrets, configMap,...)

Persistent
dedicated disks
remote (network attached storage) or dedicated local disk

explicit lifetime outlives containers/pods
represented by volumes (PVC/PV)

A
PVClaim

PersistentVolumes (PV)

=& =

Local Ephemeral Storage Management

Efficient allocation
support local ephemeral storage as a resource

Resource isolation
avoid single pod or container uses up all disks

System stability

reserve certain amount of local storage for system use to make system

more stable

Container-level

apiVersion: vi1

kind: Pod
User sets ephemeral-storage resource TREeEa
name: frontend
requirements R
- name: db
. image: mysql
Container resources:
requests:
request: guaranteed resource to the container l,zegzmeral-storage: "2G1"
1mi .
limit: maximum resource allowed to use e
" :) : A image: wordpress
if container’s usage exceeds its limit, pod ecources -
1 i requests:
WI” be eVICted ephemeral-storage: "106Gi"
limits:

ephemeral-storage: "10Gi"

Pod-level

User can set ephemeral volume sizeLimit

emptyDir volume sizeLimit

If emptyDir volume usage exceeds its limit, pod

will be evicted

container

container

EmptyDir
Volume

i

Huiy

Jwi|azIs

apiVersion: vi
kind: Pod
spec:

containers:
- name: db
image: mysql
resources:
requests:
ephemeral-storage: "2Gi"
limits:
ephemeral-storage: "4Gi"
- name: wp
image: wordpress
resources:
requests:
ephemeral-storage: "10Gi"
limits:
ephemeral-storage: "10Gi"
volumeMounts:
- mountPath: /cache
name: cache-volume

volumes:
- name: cache-volume
emptyDir:

sizelLimit: 20Gi

Pod-level

apiVersion: vi
kind: Pod

spec:
containers:
- name: db
_ image: mysql
User cannot set explicit pod-level resources,
requests:
I Yoy I) h 1-st : "2G1"
implicitly, sum of the containers’ resources e
ephemeral-storage: "4Gi"
- name: wp
F)()(j pod image: wordpress
- — resources:
Request: (2+10)Gi & | container | 3 requests:
. . % g ephemeral-storage: "10Gi"
Limit: (4+10)c: @ Limits: o
container . ﬁﬁhemeral—storage. 10G1
. . . volumeMounts:
Usage. Usage_containers + Usage_emptyDir T T
name: cache-volume
_ volumes:
EmptyDir - name: cache-volume
Volume emptyDir:
sizelLimit: 20Gi

QoS Classes

Based on request/limit set, pods have different QoS

Guaranteed

0 < request == |imit

pods are guaranteed to not be killed until exceeding the limit
Burstable

0 <request < limit
pod might use more resources than request, more likely to be killed

Best effort
no request/limit specified, lowest priority

Node-level

Capacity
Allocation Capacty
. Guaranteed Burstable Best-effort
> Pod request < Capacity, but request roquest
> Pod limit > Capacity
. Guaranteed Burstable Best-effort
> Pod usage > Capacity imitlusage limit/usage usage

Disk Pressure

reclaim resources: delete dead pods and unused images

evict pods: choose victim pods in the order of their QoS
--eviction-hard="nodefs.available<1Gi"

--eviction-soft="nodefs.available<2Gi"
--eviction-soft-grace-period="nodefs.available=1m"

Node-level

System processes also compete resources with user pods

Allocatable resource
how much resources can be allocated to users’ pods
allocatable = capacity - reserved (system overhead)

How much to reserve? Capacity ~
overhead = Node Usage - > Pod Usage

Allocatable Reserved

roughly proportional to capacity
kubelet usage: O(#Pods)

Node-level Allocatable

Capacity —

SCh ed u I | ng Allocatable Reserved
allocatable is sufficient for the request

constraints: > Pod request < Allocatable

Eviction
make sure guaranteed reserved resources Capacity —

evict if) Pod usage > Allocatable Allocatable | Reserved

Eviction Policy

apiVersion: vi

kind: Pod
spec:
containers:
- name: db
. . image: mysql
F)()(j F)r|()r1t)/ priorityClassName: high-priority
alpha feature in release 1.8
the importance of a Pod relative to other Pods. apiVersion:
. . . scheduling.k8s.io/v1alphai
Eviction policy kind: PriorityClass
. metadata:
evict pods where usage > requests name: high-priority
LAY value: 1000000
rank pOdS by prlorlty globalDefault: false
rank pOdS by usage_requests description: "This priority class
should be used for XYZ service pods
only."

Namespace-level

Capacity
How do teams/groups share resources? Canacity
Namespace
partition resources into a logically named groups ~ [-P1 (P2 [P3] | (P4 P> || P8

ability to specify resource constraints for each grou

Namespace-level Resource

apiVersion: v1

Quota kind: ResourceQuota
_ _ metadata:
resource isolation among namespaces name: demo
. . .. spec:
guota object specifies total requests/limits hard:

requests.ephemeral-storage: 10Gi
limits.ephemeral-storage: 15Gi

IN namespace
> Pod request <= request quota
e >Pod limit <= limit quota

During pod creation, quota is checked against the resource requests/limits

Namespace-level

LimitRange
» Configure default requests and limits for a namespace

apiVersion: v1
kind: LimitRange
metadata:
name: limit-range
spec:
limits:
- default:
ephemeral-storage: 1Gi
defaultRequest:
ephemeral-storage: 256 Mi
type: Container

Summary

Support local storage as first-class resource
able to set resource limit/request
Support local storage resource management at

container/pod-level: resource allocation and limitation
node-level: allocatable to ensure system stability
namespace-level: support isolation among teams

Disk |O isolation

Extend Metrics API to include local ephemeral storage
Pod-level resource request/limits

Dynamic resource management

o static resource setting might not be appropriate

o resource requirements might change dynamically

o system process resource consumption might change

Acknowledgement

Kubernetes team work

Saad Ali, Michelle Au, Cheng Xing, David Zhu (Storage Team)
Vishnu Kannan, David Ashpole, Tim Aliclair, ...

Community Contributor

Nick Ren

Resource Management

Efficient allocation
scheduler finds the “best” host that satisfies the resource request

Resource isolation
kubelet monitors the resource usage, and makes sure the actual usage
IS under the resource limit
actions could be throttle, kill container, evict pod

System Stability gEu—
reserve resources for system processes . .
evict pods if allocatable is not enough for all running pods .

Order

best effort: consume the most of the starved resource are failed first

burstable: pods that consume the greatest amount of the starved
resource relative to their request for that resource are killed first

guaranteed: pods that consume the greatest amount of the starved
resource relative to their request are killed first

