
REST, RPC, and Brokered Messaging 
Nathan Murthy, Staff Software Engineer, Tesla 
 



Automo&ve	 Energy	





Source: Hailo 









When REST makes sense 

• Layered hypermedia data transfer (HTTP) 
•  Ideal for web browsers and front-end apps 
• Client-Server communication 

•  User Agents 
•  One-to-One 

• Human-readable content 
• Enforcing CRUD semantics 

•  POST, GET, PUT/PATCH, DELETE 
• Creating public or external APIs for web clients 



When RPC makes sense 

• Protocol agnostic, doesn’t have to be HTTP but it could 
•  Inter-service communication 

•  Services to talk to other services 
•  One-to-One 

• Human is not necessarily producer/consumer of data 
• Free-form semantics, not limited to CRUD 

•  You get to pick your own nouns and verbs 
•  Affords stronger domain specificity 

• Creating internal APIs inside the data center 



What about Message Brokers? 
• Many-to-Many 

•  Abstracts away locations of producers and consumers 
•  Pub-Sub 

• Asynchronous communication 
•  Message Queuing 
•  Decouple requests and responses 

• Long-lived connections 
• Moving large volumes of data in streams 
• Command Query Responsibility Segregation (CQRS) 
• Event Sourcing 



Square Peg, Round Hole 

• Avoid making an awkward domain language 
• Objects at REST tend to stay at REST 

•  Message Broker topics mimicking HTTP verbs 
•  /control/post/device 
•  /measurement/get/device 

• Different styles of “real-time” HTTP/1.1 
•  Long polling 
•  WebSockets, Comet 
•  Content-Type: text/event-stream
•  Transfer-Encoding: chunked

•  Just use HTTP/2 streaming 
 



Putting Things Together 



Tools for REST and RPC 



Tools for Brokered Messaging 

??? 





Thank You! 

@natemurthy 


