

KubeCon

North America 2017

.

Kafka-Operator: Managing and Operating Kafka Clusters in Kubernetes

.....

Nenad Bogojević, Solution Architect, Amadeus

About Me & Amadeus

• **aMaDEUS** provides IT services for travel industry

- 30 years
- Runs kubernetes deployments almost since inception
 - In own premises, in public clouds
- Me: Nenad Bogojević
 - Solution architect involved in design of new platform and migrating existing applications

Amadeus uses Kafka

- For log & events collection
 - Installed with puppet
- For streaming platform

What is Kafka?

Kafka in Kubernetes?

- Kafka cluster
 - Each broker has identity need to find each other
 - Brokers need persistence to store partition logs
- Zookeeper cluster
 - Another cluster with persistence
- StatefulSet

StatefulSet refresher

- Provide stable pod identity
- Provide stable storage
- Ordered startup, shutdown
- Rolling updates

Kafka and Zookeeper StatefulSet

Kafka and Zookeeper StatefulSet

Containers, Charts & Co

Containers

- <u>https://github.com/Yolean/kubernetes-kafka</u>
- Charts & co
 - <u>https://github.com/kubernetes/contrib/tree/master/statefulsets/kafka</u>
 - <u>https://github.com/EnMasseProject/barnabas</u>
 - <u>https://github.com/nbogojevic/kubernetes-kafka</u>
- Operators:
 - <u>https://github.com/krallistic/kafka-operator</u>
 - <u>https://github.com/nbogojevic/kafka-operator</u>

Affinity

Node selectors

 Using node selector to land instances on machines with good hardware (e.g. SSD).

Anti-affinity

 Using anti affinity to spread instances across different physical machines

nodeSelector: # ... disk: fast

```
affinity:
    podAntiAffinity:
    preferredDuringSchedulingIgnoredDuringExecution:
    - weight: 1
    podAffinityTerm:
        labelSelector:
        matchExpressions:
        - key: app
        operator: In
        values:
        - kafka-cluster
        topologyKey: "kubernetes.io/hostname"
```


StatefulSet

containers:

- # ...
- volumeMounts:
- name: datadir mountPath: /opt/kafka/data
- # Is empty directory good idea?
 volumes:

- name: datadir

```
emptyDir: {}
```

- If your pod restarts, it will get same emptyDir, and recover data
- If pod moves to other node, it will lose data!
- Kafka performance is mostly disk bound (network also)
- Kafka has replication!

Persistence

Common wisdom

- Use persistent volume, otherwise you'll lose Kafka logs
- Relying on Kafka replication
 - Use empty volume
 - if container crashes, you keep the logs
 - if node crashes, rely on replication
 - have enough replicas and brokers
 - 5 broker cluster, 2 replicas you can lose 1 broker
- Soon: local persistent volume

Monitoring (Kubernetes)

StatefulSet

Checks that server is ready
readinessProbe:

exec:

command:

- bin/kafka-broker-api-versions.sh
- --bootstrap-server=localhost:9092
- # Checks that server accepts connection
 livenessProbe:

tcpSocket:

port: 9092

Monitoring (JMX and Prometheus)

StatefulSet

template:

metadata:

```
annotations:
```

```
prometheus.io/scrape: "true"
prometheus.io/path: "/metrics"
prometheus.io/port: "9779"
```

Container

KubeCon

North America 2017

100.2.

1.

. . . .

Operators

. . . .

. 5. 3.

.

Le

S340563

0.01.0.0

821.8

.>

...

. . . .

2:00:

10 0

. .

1 . . .

......

1. . . Y

2220

What are Operators?

- Transposing domain knowledge of SRE/operations into executable code
- @Amadeus we use operators for
 - Prometheus
 - Redis cluster
 - Workflow
 - Kafka

Provisioning Clusters

- Helm charts/Openshift templates
- Once platform is set up, cluster stays in place
- We can scale up
- But scale down, evacuation and upgrades are tricky

How About Topics?

Operating topics means

- Make sure that topic exists in target environments
- Make sure that topic is deleted once it is no longer used
- Propagate same configuration across environments
- Configure retention based on available disk space
- Configure clients with credentials
- Deliver configuration and requirements as code

Topics as a Code

- ConfigMap or CustomResource describing
 - Name
 - Partition count
 - Replication factor
 - Topic properties
- Equivalent to provision/unprovision of ServiceCatalog

apiVersion: v1
kind: ConfigMap
metadata:
 name: sample-topic
 labels:
 config: kafka-topic
data:
 partitions: "20"
 replication-factor: "2"
 properties: |
 retention.ms=1000000

Topics – Access Control

- Deployments describe which topic they use via annotations
- Operator assigns user, generates java JAAS configuration, creates secret
- Equivalent to bind/unbind of ServiceCatalog

```
labels:
    app: kafka-client
    kafka-operator: inject-credentials
annotations:
    "topic.kafka.nb/consumes": "input-topic"
    "topic.kafka.nb/produces": "output-topic"
```

Kafka Upgrades

Inter broker protocol

- Set protocol version to current
- Upgrade brokers one by one
- Set protocol version to new
- Storage format
 - Have consumers on up-to date version
 - Update format version to new
- Easy way out: don't upgrade, but re-create?

Performance

Dominated by disk I/O – using SSD

- Then by network
- Almost never CPU or memory (2-4 VCPU, 2-4GB), half for JVM heap
- 100K messages/sec
- Getting zookeeper and brokers on same nodes reduces network – same goes with clients ;)

KubeCon

North America 2017

Thanks!

A

1

. . . .

K8S & Kafka, Pulse! tribe, and in particular Serge Beuzit, David Benque, Mathieu Bruyen, Laurent Cognard, Florent Coquelet, Pierre Dor, Yassine Ferkouche, Vincent Magry, Clement Seveillac, Stefano Troiani

· · · ?.

.

. 20 .

y's'aV

.....

521.8

...

-

. .

.