
Jaeger
Project Session

Pavol Loffay (Red Hat), Yuri Shkuro (Uber)

CloudNativeCon NA, Austin, Dec-8-2017

1

● Introduction to tracing
● Demo
● Zipkin drop-in replacement
● Istio Jaeger demo
● Roadmap

○ Path based dependency diagrams
○ Adaptive sampling

● Discussion

Agenda

2

Distributed Tracing
Concepts and terminology

3

Transaction Monitoring for Microservices

4

Distributed Concurrency
“The Simple [Inefficient] Thing”

Basic Concurrency

Async Concurrency

Distributed Concurrency

Context Propagation & Distributed Tracing

5

→

time

OpenTracing

• Instrumentation API
– Context propagation
– Distributed tracing
– Contextualized logging
– Contextualized metrics

• Vendor neutral
• Cross language
• CNCF member project

6

http://opentracing.io

Let’s look at some traces
demo time: http://bit.do/jaeger-hotrod

7

http://bit.do/jaeger-hotrod

Jaeger, a Distributed Tracing System

8

https://jaegertracing.io

https://jaegertracing.io

• Inspired by Google’s Dapper and OpenZipkin

• Started at Uber in August 2015

• Open sourced in April 2017

• Official CNCF project, Sep 2017

• Built-in OpenTracing support

• https://jaegertracing.io

Jaeger - /ˈyāɡər/, noun: hunter

9

https://jaegertracing.io

Technology Stack

● Go backend
● Pluggable storage

○ Cassandra, Elasticsearch, memory, ...
● React/Javascript frontend
● OpenTracing Instrumentation libraries

10

Community

● 10 full time engineers at Uber and Red Hat

● 30+ contributors on GitHub

● Already used by many organizations

○ including Symantec, Red Hat, Base CRM, Uber,

Massachusetts Open Cloud, Nets, FarmersEdge,

GrafanaLabs, Northwestern Mutual, Zenly

11

UBER Service Dependency Graph

Jaeger 1.0
http://bit.do/jaeger-1-0

13

http://bit.do/jaeger-1-0

Announcing Release 1.0

● UI performance and usability improvements to view large traces

● Storage backends: Cassandra and ElasticSearch

● Spark job for building service dependencies diagram

● Client libraries: Go, Java, Python, Node.js, C++ (new)

● Integration with other CNCF projects
○ Templates for deploying Jaeger on Kubernetes

○ All Jaeger components expose Prometheus metrics by default

○ Integration with Envoy/Istio

● Drop-in replacement for Zipkin backend

14

Jaeger in Istio demo
OpenTracing with Istio

15

Tracing via Istio Only

16

Tracing With Istio And OpenTracing

17

Roadmap
http://bit.do/jaeger-roadmap

18

http://bit.do/jaeger-roadmap

● APIs have endpoints with different QPS

● Service owners do not know the full impact of

sampling probability

Adaptive Sampling is per service + endpoint,

decided by Jaeger backend based on traffic

Adaptive Sampling

19

● Based on Kafka and Apache Flink
● Support aggregations and data mining
● Examples:

○ Pairwise dependencies diagram
○ Trace quality metrics by service
○ Path-based dependencies diagram
○ Latency histograms

Data Pipeline

20

Tracing Quality Metrics by Service

21

my-service-x

my-service-x

Pairwise Service Dependency Diagram

22

Dingo → Shrimp → Dog.
Does it mean Dingo
depends on Dog?

Path-Based Service Dependency Diagrams

23

actual dependency

Latency Histograms

24

top contributors to
the latency bucket

Q & A
Open Discussion

25

Getting in Touch

• GitHub: https://github.com/jaegertracing

• Chat: https://gitter.im/jaegertracing/

• Mailing List - jaeger-tracing@googlegroups.com

• Blog: https://medium.com/jaegertracing

• Twitter: https://twitter.com/JaegerTracing

• Bi-Weekly Community Meetings
26

https://github.com/jaegertracing
https://gitter.im/jaegertracing/Lobby
https://groups.google.com/forum/#!forum/jaeger-tracing
https://medium.com/jaegertracing
https://twitter.com/JaegerTracing
https://docs.google.com/document/d/1ZuBAwTJvQN7xkWVvEFXj5WU9_JmS5TPiNbxCJSvPqX0/edit

