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● Introduction to tracing
● Demo
● Zipkin drop-in replacement
● Istio Jaeger demo
● Roadmap

○ Path based dependency diagrams
○ Adaptive sampling

● Discussion

Agenda
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Distributed Tracing
Concepts and terminology
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Transaction Monitoring for Microservices
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Distributed Concurrency
“The Simple [Inefficient] Thing”

Basic Concurrency

Async Concurrency

Distributed Concurrency



Context Propagation & Distributed Tracing
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→

time



OpenTracing

• Instrumentation API
– Context propagation
– Distributed tracing
– Contextualized logging
– Contextualized metrics

• Vendor neutral
• Cross language
• CNCF member project
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http://opentracing.io


Let’s look at some traces
demo time: http://bit.do/jaeger-hotrod
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http://bit.do/jaeger-hotrod


Jaeger, a Distributed Tracing System
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https://jaegertracing.io 

https://jaegertracing.io


• Inspired by Google’s Dapper and OpenZipkin

• Started at Uber in August 2015

• Open sourced in April 2017

• Official CNCF project, Sep 2017

• Built-in OpenTracing support

• https://jaegertracing.io 

Jaeger - /ˈyāɡər/, noun: hunter
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https://jaegertracing.io


Technology Stack

● Go backend
● Pluggable storage

○ Cassandra, Elasticsearch, memory, ...
● React/Javascript frontend
● OpenTracing Instrumentation libraries
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Community

● 10 full time engineers at Uber and Red Hat

● 30+ contributors on GitHub

● Already used by many organizations

○ including Symantec, Red Hat, Base CRM, Uber, 

Massachusetts Open Cloud, Nets, FarmersEdge, 

GrafanaLabs, Northwestern Mutual, Zenly
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UBER Service Dependency Graph



Jaeger 1.0
http://bit.do/jaeger-1-0
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http://bit.do/jaeger-1-0


Announcing Release 1.0

● UI performance and usability improvements to view large traces

● Storage backends: Cassandra and ElasticSearch

● Spark job for building service dependencies diagram

● Client libraries: Go, Java, Python, Node.js, C++ (new)

● Integration with other CNCF projects
○ Templates for deploying Jaeger on Kubernetes

○ All Jaeger components expose Prometheus metrics by default

○ Integration with Envoy/Istio

● Drop-in replacement for Zipkin backend
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Jaeger in Istio demo
OpenTracing with Istio
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Tracing via Istio Only
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Tracing With Istio And OpenTracing
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Roadmap
http://bit.do/jaeger-roadmap
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http://bit.do/jaeger-roadmap


● APIs have endpoints with different QPS

● Service owners do not know the full impact of 

sampling probability

Adaptive Sampling is per service + endpoint,

decided by Jaeger backend based on traffic

Adaptive Sampling
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● Based on Kafka and Apache Flink
● Support aggregations and data mining
● Examples:

○ Pairwise dependencies diagram
○ Trace quality metrics by service
○ Path-based dependencies diagram
○ Latency histograms

Data Pipeline
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Tracing Quality Metrics by Service
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my-service-x

my-service-x



Pairwise Service Dependency Diagram
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Dingo → Shrimp → Dog.
Does it mean Dingo 
depends on Dog?



Path-Based Service Dependency Diagrams
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actual dependency



Latency Histograms
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top contributors to 
the latency bucket



Q & A
Open Discussion
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Getting in Touch

• GitHub: https://github.com/jaegertracing

• Chat: https://gitter.im/jaegertracing/

• Mailing List - jaeger-tracing@googlegroups.com

• Blog: https://medium.com/jaegertracing

• Twitter: https://twitter.com/JaegerTracing

• Bi-Weekly Community Meetings
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https://github.com/jaegertracing
https://gitter.im/jaegertracing/Lobby
https://groups.google.com/forum/#!forum/jaeger-tracing
https://medium.com/jaegertracing
https://twitter.com/JaegerTracing
https://docs.google.com/document/d/1ZuBAwTJvQN7xkWVvEFXj5WU9_JmS5TPiNbxCJSvPqX0/edit

