
Extending Kubernetes 101

Travis Nielsen, Principal SDE, Quantum Corp, Rook

Extensibility Schedule

11:10	 Extending	Kubernetes	101	

11:55	 Kubernetes	Feature	Prototyping	with	External	Controllers	and	CRDs	

2:00	 Extending	the	Kubernetes	API:	What	the	Docs	Don’t	Tell	You	

2:45	 client-go:	The	Good,	The	Bad	and	The	Ugly	

3:50	 Using	Custom	Resources	to	Provide	Cloud	NaQve	API	Management	

4:35	 Extending	Kubernetes:	Our	Journey	&	Roadmap	

Agenda

• Why to extend Kubernetes
• How to extend Kubernetes

•  Understand Kubernetes Patterns
• Code Walkthrough!
• Q&A

Resource Declaration

• Kubernetes resources are declarative
• Define resources and their properties in yaml
• Kubernetes handles their creation

Declarative Namespace

Declarative Pod

Declarative Custom Resources

• Custom resources can also be defined
• Follow the same pattern as built-in resources

Example: Etcd

https://github.com/coreos/etcd-operator

Example: Prometheus
https://github.com/coreos/prometheus-operator/

Example: Rook

https://github.com/rook/rook

Are Custom Resources Needed?

• What if Kubernetes resources do not satisfy your application’s
management requirements?

• What if you need to handle failover differently?
• What if you have dynamic components to deploy?
• What if you want to automate management beyond health

checks?

Example: Distributed Data Platform

• Distributed Data platforms require special handling
• Deployment
• Monitoring
• Failover
• Upgrade
• Durability

The Traditional Approach

•  Implement a management REST API
• Expose a service endpoint
• No integration with Kubernetes API or kubectl
• No RBAC security
• L

The Extension Approach

• Custom resources are designed to feel like
built-in resources

• Custom Resource Definition (CRD)
•  Declarative state

• Resource manifests
•  kubectl create -f my-cluster.yaml
•  kubectl edit clusters.rook.io my-cluster
•  kubectl delete clusters.rook.io my-cluster

Consistent Tools for Extensions

• Tools
•  kubectl
•  Helm

• API
•  client-go

• Security
•  RBAC

Resource Patterns

• Kubernetes resources follow a pattern
• Declarative

•  kubectl create -f my-resource.yaml
•  kubectl edit deployment my-resource
•  kubectl delete deployment my-resource

• Handled by a controller

Controllers

• Controllers act on the resource metadata
•  Create, update, delete

• Control loop
•  Observe

•  Watch for a desired state, triggered by Kubernetes events
•  Analyze

•  Calculate changes
•  Act

•  Add, update, or remove a resource

Observe	

Analyze	

Act	

Developing Custom Resources

•  Design your custom resource
•  Define the CRD properties

•  Make your resource available to clients
•  Run the code generation tools

•  Develop your custom controller (operator)
•  Simplified with the Operator Kit (https://github.com/rook/operator-kit)
•  Register the CRD
•  Implement Add(), Update(), and Delete()
•  Start watching the CRD

•  Build

Custom Resources at Runtime

• Define operator manifest
•  RBAC rules
•  Role bindings
•  Deployment for the operator

• Run the operator
•  kubectl create -f sample-operator.yaml

• Create a custom resource
•  kubectl create -f sample-resource.yaml

Sample CRD

hWps://github.com/rook/operator-kit/tree/master/sample-operator	

Demo: Custom Resource

•  Start the operator
•  kubectl create -f sample-operator.yaml

•  Create the custom resource
•  kubectl create -f sample.yaml

•  Update the resource
•  kubectl edit samples my-sample

•  Delete the resource
•  kubectl delete samples my-sample

•  View the actions in the operator log
•  kubectl logs -l app=sample-operator

Code Walkthrough

Key Takeaways

• CRDs make Kubernetes extensible
• CRDs follow the same patterns as all K8s resources

•  Custom controller applies desired state
• CRDs have low overhead to implement

•  Simple patterns with well-documented examples
•  Majority of your time will be spent on business logic

Rook

• Block, File, and Object storage for Kubernetes
•  Built on Ceph
•  Open to other storage platforms

• CRDs + Operator + Volume Plugin = Fully integrated storage
• CRDs

•  Cluster, Pool, ObjectStore, Filesystem, VolumeAttachment
• Submitted to CNCF

Links

• CRD Docs:
•  https://kubernetes.io/docs/concepts/api-extension/custom-resources/

• Operator kit: Library to create a custom controller
•  Includes the “hello world” sample
•  https://github.com/rook/operator-kit

• Etcd: https://github.com/coreos/etcd-operator

• Prometheus: https://github.com/coreos-prometheus-operator
• Rook: https://github.com/rook/rook

Questions?

• Travis Nielsen
•  travis.nielsen@quantum.com
•  github: @travisn
•  twitter: @STravisNielsen

• Rook
•  https://github.com/rook/rook
•  We’re hiring!

