X

CloudNativeCon
North America 2017

Evolving & Supporting Stateful, Multi-Tenant
Decisioning Applications in Production

B. Frazier, K. Gasser & G. Mead, Software Engineers, Capital One

SR INRY NN Y S IR N S e
S NN OENE NS TN RS 2R S

Intro (Keith)

Cluster Installation and Operations: State
Management and “Rehydration”/Upgrades
(Bryce)

Multi-tenancy and PaaS CLI/DSL (Gavin) i

Caplta/l()ne@

Our experience with K8s

In production at AWS since 2Q17 (K8s v1.6.x)

Single Region, Multi-AZ, homogeneous node types

Full-stack (from AMI up) compliance-driven "re-hydrations” of cluster
every 60d

Supporting four types of workloads

T1: Real-time decisioning for transaction streams and analytics
T2: Batch-based model refit pipelines
T3: Ad hoc analytical queries from data analysts

T4: Operational workloads (telemetry stacks, cluster services,
housekeeping jobs, etc) Capita/l()ngv@

Production Workloads

T1/2: DOMAIN

T3: ANALYTIC ENVT T4: LOGGING

li ZooKeeper i ,@ .
: Zeppelin i &nﬁm}
%?EFﬁnk -
A | APACHE
Conif | 'DRILL kibana
88 kafka fluentd
& redis |
crate | T4: METRICS
__ 15 Grafana
L 4
HEAPSTER
______ Pachyderm L InfluxDB

T4: SERVICES

Istio

A

-

ShybNS

STUNNEL

7 —

ZIPKIN

Qetcd
Y

@dex capaadli

®
L
o
c
LLl
o
£
=
Q
R
T
@
o
—
[—

T2: Model Refit with Pachyderm

2

Copy on write, similar to Git
Data Provenance
Reproducible at scale

S3-backed

Reactive batch pipelines

Pachyderm

P

Caplta/l()ne@

e
c
()
=
oo
@)

it
>
c

LLl

©
(&)

=
>
©
c
<
']
[=

T4: Telemetry: Responsive > Reactive

Metrics and Alerting: Ops and Apps teams share Grafana
stack, but separate dashboards.
Future state: Separate Grafana stacks isolated by tenant namespace

Logging: Ops and Apps teams share EFK stack, separate
tagging by application, so filterable

Future state: Fluentd configurations will forward application log
streams to isolated logging aggregators/dashboards as elected by
application teams (isolated by tenant namespace if internal to cluster)

P

Caplfa/,One@

Def. State and Multi-Tenancy

Q: What are stateful workloads?

Stateful sets aka "Petsets”. e.g., Kafka topics

Q: What do you mean by “multi-tenancy”? Isn’'t K8s
already multi-tenant?

Not without sufficiently isolated workloads

Many services designed to be shared (e.g. telemetry stacks,

Zookeeper ensemble, Flink cluster)

Namespaces don'’t solve all forms of isolation

Painpoints at scale with differently workload resource demands —
Capita/l()ng@

Customer interactions...

11

want my own K8s cluster.”

11

want my own Flink cluster.”

13

want access to the K8s dashboard.”

11

want this much resource...”

13

want elasticity...”
B

Caplta/l()ne@

Your experience?

How many in production?

... with state?

...... with multi-tenancy?

P

Caplta/l()ne@

Value to customers — a “managed service”

Free from 60d Compliance “Rehydration” Requirement

K8s “with benefits”

++Cloud Engineering
++|nstallation
++Persistent State
++Upgrades/Patching
++Streamlined Security
++Resiliency Engineering
++Common Telemetry Services: Logging/Monitoring
++Common Domain Services: Data + App Infrastructure Ca@ne@

Tenant Isolation - Namespacing

Independent Deployments

Locked down User policies
Authn — Dex
Authz — RBAC
Network Policies via Calico U5 [F g ‘toodiences
A make good
" "
neighbors.
~Robert Frost

Stateful Applications & Pod-Volume Affinity

Persistent Volumes /" Noder)/ nNodez) [Noden)
Piece of storage, .
analogous to node Statefulset 0.9 029 o

zkpr-0 zkpr-1 zkpr-2

Persistent Volume Claims
A request for storage, similar to pod

Stateful Sets
Unique id

Storage Classes

[pvc-zkpr-0]

- J

[pvc-zkpr-1]

\

AN

[pvc-zkpr-2]

/

Capltal()ne

Sidebar: Automated Upgrades & “Rehydration”

Rehydration is a compliance req.
AMIs actually deprecated after 60d

A Kubernetes job (!!!)

Validates healthy cluster
BEFORE every step

Scales out, drains each node, scales in

~2.5 hours for full upgrade

Lessons Learned: Safety First!

Pod Anti-affinity (curse of fat pods)

Resource Limits, Limit Ranges & Quotas

Kubelet Resource Management

P

Caplta/l()ne@

Future state: Elastic/Dynamic Load

Pod autoscaler

Node autoscaler
Custom instance types for various loads
Taints/Tolerations

GPU

P

Caplta/l()ne@

Kubernetes should be invisible

Platform is not a general purpose Kubernetes offering
*Kubernetes is an implementation detail of how we deliver our
service offerings

*Users were asking for PaasS features like a CLI. So we gave
them one.

P

Caplta/l()ne@

Current User/Platform Interaction

cli>flink deploy --url=file:///myjob.jar ‘ \
“:1.

ZIPKIN

= GRPG

it

Capi fa/'One

Learning Opportunities

oIt is hard to put guard rails around a shared Flink Cluster

*Determining how a Flink Job can affect the overall cluster is
difficult

*Users were asking for their own clusters

P

Caplta/l()ne@

Future User/Platform Interaction

cli>flink create cluster

cli>flink deploy --url=file:///myjob.jar

_—

JAEGER
GRPC

v
° 15 Grafana
—@— &
Apache Flink Apache Flink
O —

¢:aput§g(huf

Conclusions

What is in your K8s “managed service”?

DSL-based CLI is a good way to insulate users from k8s implementation
details

State will creep in with its “gravity and inertia”
Unchecked esp. ad hoc workloads have a resource consuming “blast-radius”
You are likely already multi-tenant, you may not realize it

Type 4 (ops) workloads will become richer, and continue upward trend in
resource consumption (e.g. tracing is now de rigeur)

Clusters supporting streaming services still need R/R services: REST, gRPC

Given k8s extensibility and WIP, specialized clusters with CDRs, operators for—
domain-specific needs will emerge CapitalOne

Community Shout-out!

Sam Brown, Organizer of the NOVA-
Kubernetes meetup:
https://www.meetup.com/NOVA-Kubernetes/
-- please consider attending if you are in the
areal

P

Caplta/l()ne@

it

Caplta/l()ne"

