
Evolving & Supporting Stateful, Multi-Tenant 
Decisioning Applications in Production
B. Frazier, K. Gasser & G. Mead, Software Engineers, Capital One



Agenda

• Intro (Keith)

• Cluster Installation and Operations: State 
Management and “Rehydration”/Upgrades 
(Bryce)

• Multi-tenancy and PaaS CLI/DSL (Gavin)



Our experience with K8s

• In production at AWS since 2Q17 (K8s v1.6.x)
• Single Region, Multi-AZ, homogeneous node types 
• Full-stack (from AMI up) compliance-driven ”re-hydrations” of cluster 

every 60d

• Supporting four types of workloads
• T1: Real-time decisioning for transaction streams and analytics
• T2: Batch-based model refit pipelines 
• T3: Ad hoc analytical queries from data analysts
• T4: Operational workloads (telemetry stacks, cluster services, 

housekeeping jobs, etc) 



Production Workloads 
T1/2: DOMAIN T3: ANALYTIC ENVT T4: LOGGING

T4: METRICS

T4: SERVICES

HEAPSTER

sTUNNEL



T1: Decisioning Engine



T2: Model Refit with Pachyderm

• Copy on write, similar to Git

• Data Provenance

• Reproducible at scale

• S3-backed

• Reactive batch pipelines



T3: Analytical Environment



T4: Telemetry: Responsive > Reactive

• Metrics and Alerting: Ops and Apps teams share Grafana
stack, but separate dashboards.

• Future state: Separate Grafana stacks isolated by tenant namespace

• Logging: Ops and Apps teams share EFK stack, separate 
tagging by application, so filterable

• Future state: Fluentd configurations will forward application log 
streams to isolated logging aggregators/dashboards as elected by 
application teams (isolated by tenant namespace if internal to cluster)



Def. State and Multi-Tenancy

• Q: What are stateful workloads?
• Stateful sets aka ”Petsets”: e.g., Kafka topics

• Q: What do you mean by “multi-tenancy”? Isn’t K8s 
already multi-tenant?

• Not without sufficiently isolated workloads
• Many services designed to be shared (e.g. telemetry stacks, 

Zookeeper ensemble, Flink cluster)
• Namespaces don’t solve all forms of isolation
• Painpoints at scale with differently workload resource demands



Customer interactions…

• “I want my own K8s cluster.”
• “I want my own Flink cluster.”
• “I want access to the K8s dashboard.”

• “I want this much resource…”
• “I want elasticity…”



Your experience?

• How many in production?

• … with state?

• … … with multi-tenancy?



Value to customers – a “managed service”

• Free from 60d Compliance “Rehydration” Requirement
• K8s “with benefits”

++Cloud Engineering
++Installation
++Persistent State
++Upgrades/Patching
++Streamlined Security
++Resiliency Engineering 

++Common Telemetry Services: Logging/Monitoring
++Common Domain Services: Data + App Infrastructure



Tenant Isolation - Namespacing

• Independent Deployments

• Locked down User policies
• Authn – Dex
• Authz – RBAC

• Network Policies via Calico



Stateful Applications & Pod-Volume Affinity


• Persistent Volumes
• Piece of storage, 

analogous to node

• Persistent Volume Claims
• A request for storage, similar to pod

• Stateful Sets 
• Unique id

• Storage Classes

pv-zkpr-0 pv-zkpr-1 pv-zkpr-2

zkpr-0 zkpr-1 zkpr-2

pvc-zkpr-1pvc-zkpr-0 pvc-zkpr-2

Node	1 Node	2 Node	N

Statefulset
of	zkpr



Sidebar: Automated Upgrades & “Rehydration”

• Rehydration is a compliance req.
• AMIs actually deprecated after 60d

• A Kubernetes job (!!!)

• Validates healthy cluster
BEFORE every step

• Scales out, drains each node, scales in

• ~2.5 hours for full upgrade



Lessons Learned: Safety First!

• Pod Anti-affinity (curse of fat pods)

• Resource Limits, Limit Ranges & Quotas

• Kubelet Resource Management



Future state: Elastic/Dynamic Load

• Pod autoscaler

• Node autoscaler
• Custom instance types for various loads
• Taints/Tolerations

• GPU 



Kubernetes should be invisible

•Platform is not a general purpose Kubernetes offering
•Kubernetes is an implementation detail of how we deliver our 

service offerings
•Users were asking for PaaS features like a CLI. So we gave 

them one.



Current User/Platform Interaction

cli>flink deploy --url=file:///myjob.jar



Learning Opportunities

•It is hard to put guard rails around a shared Flink Cluster

•Determining how a Flink Job can affect the overall cluster is 
difficult

•Users were asking for their own clusters



Future User/Platform Interaction

cli>flink deploy --url=file:///myjob.jar

cli>flink create cluster

CRDs	and	Operators Tenant	Namespace



Conclusions
• What is in your K8s “managed service”? 
• DSL-based CLI is a good way to insulate users from k8s implementation 

details 
• State will creep in with its “gravity and inertia”
• Unchecked esp. ad hoc workloads have a resource consuming “blast-radius”
• You are likely already multi-tenant, you may not realize it
• Type 4 (ops) workloads will become richer, and continue upward trend in 

resource consumption (e.g. tracing is now de rigeur)
• Clusters supporting streaming services still need R/R services: REST, gRPC
• Given k8s extensibility and WIP, specialized clusters with CDRs, operators for 

domain-specific needs will emerge



Community Shout-out!

•Sam Brown, Organizer of the NOVA-
Kubernetes meetup: 
https://www.meetup.com/NOVA-Kubernetes/
-- please consider attending if you are in the 
area!



Thank you!


