
Embracing Cloud Native at a
Thriving, Established Company

Brian Akins | Principal Engineer

About Me

@bakins

Principal Engineer, MailChimp

Terrible public speaker

Kubernetes since 0.14

C, Go, Containers, etc

Raspberry Pi, sheet metal,
homebrew beer

1,000,000,000
MailChimp sends about one billion emails per day

We’re hiring!

https://mailchimp.com/jobs/

Atlanta
Brooklyn
Oakland
Remote

https://mailchimp.com/jobs/

Thanks to Team Pando*

Dustin Kelly

Steph Patryk

Ted Kelly

Shanna Adria

Kris Jeffrey

Vicki Robby

Joe Eric

*Pando - clonal colony aspen tree in Utah

Warning!

This is a summary of our journey. For clarity and brevity, I

am omitting a ton of details and context. It may or may not

be applicable to your situation. What worked for us may

not work for you.

Current MailChimp Architecture

MySQLMySQL

MemcacheMemcache Memcache Memcache

Apache
PHP

Apache
PHP

Apache
PHP

Apache
PHP

Typical LAMP Monolith

Load Balancer

App Server Cache

Database

Maybe Not That Simple

Supporting
Service

Supporting
Service

Supporting
Service

Supporting
Service

Scaling Out

17 “shards”

17 Instances of the Monolith

17 Load Balancer Pairs

Hardware in 3 datacenters

Mostly Baremetal - Few VMs

Managed with Puppet
Service

Service

Service

Service

Shard
Shard

Shard
Shard

Shard
Shard

Shard
Shard

Shard
Shard

Shard
Shard

Shard
Shard

Shard
Shard

Shard

Current MailChimp Workflow

How Code Gets To Production

Local
Development
Vagrant

Github
Enterprise Jenkins

Deployer

App
ServerApp

ServerApp
ServerApp

ServerApp
ServerApp

ServerApp
ServerApp

ServerApp
Server

rsync

PR Test
s

Automatically
Deploy on
Merge To
Master

Engineering Expectations

Local development gives instant feedback

● Edit PHP and see results in browser
● Can run tests locally

Master is always running in production

● All shards run same PHP code
● Master must always work
● Feature flags

Why Change?

Monolithic Service becoming unwieldy

● Experimentation becoming more difficult
● Many teams iterating on same code

Hardware Resource Scaling

● Ordering lead times
● Scaling on the fly

Atomic, Immutable, Self-Contained Deployments

DR/BCP

Standardize logging, metrics, etc

How to Get There
Plans vs. Reality

Phase One: On Premise Kubernetes

Deploying and operating
Kubernetes on bare metal in
multiple datacenters.

● Deployment

● Networking

● Authentication

● Integration

● Ingress

Deploying Kubernetes

Kubernetes is just another application

Puppet manages Kubernetes
components

Use existing tools and knowledge

Run etcd, apiserver, controller-manager
on 5 nodes in each cluster

Current Networking

Fairly standard network

VLANs and ACLs

DMZ. VPN, MPLS, etc

Hardware switches, routers, firewalls,
etc

Load balancer

App server

Database
Server

CDN
Public
Internet

DMZ

VLAN X

VLAN Y

Kubernetes Networking

Treat Kubernetes as Application Servers

“There’s no such thing as container
networking.”

Keep it Simple

No Overlay

Layer 2 connectivity between hosts

Frontend/Backend networks

Host Routes

Node Node Node

Pod Network

Load balancer

Database
Server

Authentication

OIDC via webhook

Need Groups Information

Custom app running on each apiserver

RBAC Roles

(Cluster)RoleBindings based on group

Kube-apiserver audit logs

https://en.wikipedia.org/wiki/Lock_(security_device)

Integration

Kubernetes is just another application

Needs to integrate with existing systems

Logs shipped via Fluentd and Filebeat

Zabbix

Prometheus/Alertmanager

Sealed Secrets

Ingress

HTTPS only

Internal and DMZ load balancers

Traefik for Ingress Controller

Traefik terminates TLS

Ingress Resources with labels

haproxy

Traefik

NodePort
Service

pod pod pod

Kubernetes

Hardware

Phase Two: Application Deployment

Reliable builds and deployments ● What we tried

● What didn’t work

● What we are doing

Failed Experiments

● Helm monorepo
● Repo per Chart
● Kubectl apply wrapper
● Monorepo of “raw” YAML

Currently

Simple wrapper around helm

Chart in app repo

https://en.wikipedia.org/wiki/Scientific_method

What we are doing - for now

Github
Enterprise Jenkins

Pando

Kubernetes
API

Test
s

Automatically
Build/Deploy on
Merge To
Master

Kubernetes
API

Helm

Artifactory

Local
Dev

Phase Three: Developer Experience

How to maintain similar
developer workflow

● Local development

● Fast Feedback

● Dev/Prod parity

Local Dev Feedback Loop

Edit PHP - see in browser

Building image each time was too slow

Minikube plus NFS

Dev can see metrics in local Prometheus

Pando used locally as well

Minikube
App pod

Prometheus Tiller

NFS

Dev to Prod

Charts are part of application code

Pando tool expects a certain layout

Can iterate on application and
deployment locally

Same tooling is used by Jenkins to
deploy on merge to master

Minikube
App pod

Prometheus Tiller

NFS

Phase 3.5: Deploying Real
Applications

When we had enough tooling in
place, we need people to
actually use it

First Application

Tweak of “simple” snapshot app

The app is not so simple.

No one actually knows how it works.

Complete rewrite

PHP 7 with Headless Chrome

Bike-shedding

Tooling being written at same time.https://en.wikipedia.org/wiki/Shed

Our Real First Application

Log Processing

Already Containerized

Outgrew old infrastructure

Patient Team

Real load, not toy apps

Not directly user facing
https://en.wikipedia.org/wiki/Sawmill

Chat Bots

Slack migration

So many bots…

Different teams

Different languages

Good test of workflows and tooling

Feedback loop with developers
https://en.wikipedia.org/wiki/Robot

Oops...

One Cluster “full”

All CPU cores requested

“We don’t need to worry about capacity
for a while…”

Request CPU versus used

Autoscale

Future Work/Plans

Business Critical Applications

Updating a key business component

● Will be done on Kubernetes from
day one

● Real money involved

Then, perhaps the monolith

gRPC Service Mesh

Standardize transport and calling
mechanism

● TLS
● Service Authentication
● Service Discovery
● Circuit breakers

Currently, everyone does this per
application

gRPC Services in PHP

Yes, it is possible.

Not ready to share, yet.

Stay tuned...

Reuse years of Application code

Questions?

I skimmed over details.

I skipped a few bumps and bruises.

I have a long list of “I wish we hads”

