

presented by , Developer Advocate at Red Hat@ryanj

http://twitter.com/ryanj/
http://twitter.com/ryanj/

We Are Terrible at Pitching Kubernetes to Developers

Why?

Kubernetes
(an ops tool)

When used as directed, provides relief for the following:

1. standardized terminology & packaging - containers, volumes,
podspecs, charts

2. load balancing - services
3. scaling automation - replica sets
4. delivery automation - deployments
5. high availability - automated health checking and replacement
6. distributed scheduling and resource management - RBAC,

namespaces, labels, federation
7. ???

http://kubernetes.io/

meanwhile...

What is an App?

1. repo code
2. docker image
3. kubernetes spec files
4. charts
5. kubectl get all -l app=myapp -n

mynamespace

Proposal: Label Recommendations

https://docs.google.com/document/d/1EVy0wRJRm5nogkHl38fNKbFrhERmSL_CLNE4cxcsc_M/edit

How should we be talking to Developers about

Kubernetes?

Q: Why Kubernetes?

A: Development Velocity

A Case Study: Enterprise Records, Inc.

The Ops team has heard great things about Kubernetes, and is
interested in giving it a try - but they're having di�iculty convincing

other teams of the value

Product team needs:

More

(always more)

The web team is confused by all the new terminology, and is under
a lot of pressure to focus on delivering new tracks to customers

Convincing the team (minimal onboarding):

1.
2.

3.

Getting started is easy
Share what you know (and model your
I/O)
Choose the right toolchain

1. The Easy Part
is

minikube start

Staging
down?

Ops not
Ready?

No Excuses!

!!Everyone get a K8s!!

http://kubernetes.io/

Minikube

Minikube Docs
bit.ly/k8s-
minikube

https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
http://bit.ly/k8s-minikube

2. Share What You Know
and model your I/O

Share What You Know --dry-run
Generate kubernetes deployment and service specifications,

both named metrics-review:
kubectl run metrics-review --image=quay.io/ryanj/metrics-k8s \
--expose --port=2015 --service-overrides='{ "spec": { "type": "NodePort" } }'
--dry-run -o yaml > metrics-review.yaml

Share What You Know --dry-run
Test your generated spec:

Minikube users will be able to open the resulting service in their
browser by running:

kubectl create -f metrics-review.yaml

minikube service metrics-review

Model Your I/O

Example Repo
Create a local clone of this metrics-k8s repo:

git clone http://github.com/ryanj/metrics-k8s

Preview - local files
Next, share your local repo contents with minikube:

minikube mount $(pwd):/var/www/html

Preview - hostPath
Then, produce a new deployment spec that includes (minimal)

support for live development workflows:

1. cp metrics-review.yaml metrics-
dev.yaml

2. replace metrics-review with metrics-dev
(global)

3. Add a hostPort volume to access your local repo:
 spec:
 containers:
 - image: quay.io/ryanj/metrics-k8s
 name: metrics-dev
 ports:
 - containerPort: 2015
 resources: {}
+ volumeMounts:
+ - mountPath: /var/www/html
+ name: metrics-src
+ volumes:
+ - name: metrics-src
+ hostPath:
+ path: /var/www/html
 status: {}

Share what you know
The resulting file should look just like the included

 file from the metrics-k8s git repo.

Try launching it with:

metrics-
dev.yaml

kubectl create -f metrics-dev.yaml

https://raw.githubusercontent.com/ryanj/metrics-k8s/master/metrics-dev.yaml

Share what you know - Rollout Testing
Eval this

to send newly-built images to minikube's docker daemon:

minikube docker-env

docker build .

3. The Hard Part
Keeping it simple, and choosing the right tools for the job

The future is already here — it's just not very evenly distributed.
(W.Gibson)

Typical container adoption path:

1. docker
2. volumes, PVs
3. minikube
4. k8s modeling and scalability via spec files, pods, and other

abstractions
5. charts, openshi� templates, or hand-rolled manifest / spec

templating
6. monocular, kubeapps, ServiceCatalog
7. PaaS?

Dra�
Make it easy to get started

Charts
Share what you know

Helm & Tiller
Share more

Brigade and Kashti
Do more

Telepresence
Access more

minishi� and oc
Security Enhanced Kubernetes

Easy, right?

More Learning Opportunities
1. Kubernetes.io Tutorials

2. Katacoda
3. RyanJ's K8s-workshops
4. Interactive learning for OpenShi�:

https://kubernetes.io/docs/tutorials/
https://katacoda.com/courses/kubernetes

http://bit.ly/k8s-workshops

http://learn.openshi�.com

https://kubernetes.io/docs/tutorials/
https://katacoda.com/courses/kubernetes
http://bit.ly/k8s-workshops
http://learn.openshift.com/

Include the whole team:

Developers: Want to get ahead? Model your I/O, and Share What
You Know!
Architects: Figure out who owns manifest creation, maintanence,
and distribution
QA folks: look forward to saying: "can't repro - works fine on my
Kubernetes"
Ops: provide cloud resources grants to teams, make sure prod
has enough IaaS, ensure platform uptime, upgrades, logging,
and metrics
Security & Compliance: RBAC, config and secrets management;
Secret rotation policies; Monitor for CVEs and apply security
patches from upstream

Join the community on Slack in #kubernetes-users, and in #SIG-
Apps!

Share What You Know: Help us develop a range of solutions that
expose and/or hide kubernetes in appropriate ways

https://www.youtube.com/watch?v=vyYHfumJ-AM&list=PL69nYSiGNLP2LMq7vznITnpd2Fk1YIZF3

Learn to deliver consistently using containers

Choose the right tools for the job

then get back to making gold records

Thank You!
@RyanJ

bit.ly/kubecon-dev

