
Democratizing Machine Learning on
Kubernetes
Joy Qiao, Senior Solution Architect - AI and Research Group, Microsoft
Lachlan Evenson - Principal Program Manager – AKS/ACS, Microsoft

Who are we?

• The Data Scientist

• Building and training models

• Experience in Machine Learning libraries

• Basic understanding of computer hardware

• Lucky to have Kubernetes experience Data Scientist

Who are we? (continued)

• The Infra Engineer/SRE

• Build and maintain baremetal/cloud infra

• Kubernetes experience

• Little to no Machine Learning library experience

Infra Engineer

SRE

ML on Kubernetes

Infra Engineer

SRE
Data Scientist

Why this matters

• We have the RIGHT tools and libraries to build and train models

• We have the RIGHT platform in Kubernetes to run and train
these models

What we’ve experienced

• Two discrete worlds are coming together

• The knowledge is not widely accessible to the right audience

• Nomenclature

• Documentation and use-cases are lacking

• APIs are evolving very fast, sample code gets out of date quickly

How do we?

• Enable Data scientists to be successful on Kubernetes

• How do we enable Infrastructure engineers/SREs to build ML
platforms

• Lower the barrier to entry

• Begin to build some best-practices and baselines

Let’s get started

Running Distributed TensorFlow on
Kubernetes

In just 4 simple steps

1. Create a Kubernetes cluster

• PV for central storage (e.g. for saving model checkpoints, etc.)

2. Setup GPU drivers on the agent host VMs with GPUs

3. Create a set of pods for distributed TensorFlow

4. Run Distributed TensorFlow training job

Detailed instructions at https://github.com/joyq-github/TensorFlowonK8s

Running Distributed TensorFlow on
Kubernetes (continued)

https://github.com/joyq-github/TensorFlowonK8s

Running Distributed TensorFlow on
Kubernetes (continued)

• Sample YAML for a TensorFlow worker pod with GPUs

• Check to make sure your K8s has your GPU resources data.

$kubectl describe nodes

Distributed Deep Learning

Distributed Training Architecture

Data Parallelism

• 1. Parallel training on different
machines

• 2. Update the parameter server
synchronously/asynchronously

• 3. Refresh the local model with new
parameters, go to 1 and repeat

Credits: Taifeng Wang, DMTK team

Distributed Training Architecture

Model Parallelism

1.The global model is partitioned into
K sub-models.

2.The sub-models are distributed over
K local workers and serve as their
local models.

3. In each mini-batch, the local workers
compute the gradients of the local
weights by back propagation.

Credits: Taifeng Wang, DMTK team

Distributed TensorFlow
Architecture

• For Variable Distribution & Gradient Aggregation

• Parameter_server

Source: https://www.tensorflow.org/performance/performance_models

Distributed Training Performance
on Kubernetes

Training Environment on Azure

• VM SKU

oNC24r for workers

▪ 4x NVIDIA® Tesla® K80 GPU

▪ 24 CPU cores, 224 GB RAM

oD14_v2 for parameter server

▪ 16 CPU cores, 112 GB RAM

• Kubernetes: 1.6.6 (created using ACS-Engine)

• GPU: NVIDIA® Tesla® K80

• Benchmarks scripts:
https://github.com/tensorflow/benchmarks/tree/master/scripts/tf_cnn_benchmarks

• OS: Ubuntu 16.04 LTS

• TensorFlow: 1.2

• CUDA / cuDNN: 8.0 / 6.0

• Disk: Local SSD

• DataSet: ImageNet (real data,
not synthetic)

Training on Single node, Multi-GPU

• Linear scalability

• GPUs are fully saturated

48

96

190

0

20

40

60

80

100

120

140

160

180

200

1 2 4

im
a

ge
s/

se
c

No. of GPUs

Resnet-50 with batchsize=64

• variable_update mode: parameter_server
• local_parameter_device: cpu

Distributed Training

Settings:

• Topology: 1 ps and 2 workers

• Async variables update

• Using cpu as the local_parameter_device

• Each ps/worker pod has its own dedicated host

• variable_update mode: parameter_server

• Network protocol: gPRC

Distributed Training (continued)

Single-node Training with 4 GPUs
vs Distributed Training with 2 workers with 8 GPUs in

total 440

107.6

190

73

135

818

172.6

296

93 84.5

0

100

200

300

400

500

600

700

800

900

googlenet inceptionV3 resnet-50 resnet-152 vgg16

Im
a

ge
s/

se
c

4 GPUs

8 GPUs

Distributed training scalability depends on the compute/bandwidth ratio of the model

1.86

1.60 1.56

1.27

0.63

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

googlenet inceptionV3 resnet-50 resnet-152 vgg16

Sp
ee

d
u

p

Training Speedup on 2 nodes vs single-node

Source: https://arxiv.org/abs/1704.04560

The model with a higher
ratio scales better.

GoogLeNet scales pretty well.
VGG16 is suboptimal, due to its large
size

Distributed Training (continued)

Observations during test:

• Linear scalability largely depends on the model and network bandwidth.

• GPUs not fully saturated on the worker nodes, likely due to network bottleneck.

• VGG16 had suboptimal performance than single-node training. GPUs “starved” most of the time.

• Running directly on Host VMs rather than K8s pods did not make a huge difference, in this
particular test environment.

• Having ps servers running on the same pods as the workers seem to have worse performance

• Tricky to decide the right ratio of workers to parameter servers

• Sync vs Async variable updates

Distributed Training (continued)

How can we do better?

Horovod: Uber’s Open Source Distributed Deep Learning
Framework for TensorFlow

Benchmark on 32 servers with 4 Pascal GPUs each connected by RoCE-capable 25 Gbit/s network
(source: https://github.com/uber/horovod)

• A stand-alone python package

• Seamless install on top of TensorFlow

• Uses NCCL for ring-allreduce across
servers instead of parameter server

• Uses MPI for worker discovery and
reduction coordination

• Tensor Fusion

https://github.com/uber/horovod

Deep Gradient Compression:
Reducing the Communication Bandwidth for Distributed Training

Source: https://openreview.net/forum?id=SkhQHMW0W¬eId=SkhQHMW0W

Paper Summary:

• 99.9% of the gradient exchange in distributed SGD is redundant

• Propose Deep Gradient Compression (DGC) to greatly reduce the communication bandwidth

• DGC achieves a gradient compression ratio from 270x to 600x without losing accuracy, cutting the
gradient size of

▪ ResNet-50 from 97MB to 0.35MB

▪ DeepSpeech from 488MB to 0.74MB

• Enables large-scale distributed training on inexpensive commodity 1Gbps Ethernet and facilitates
distributed training on mobile.

https://openreview.net/forum?id=SkhQHMW0W¬eId=SkhQHMW0W

Deep Learning Workspace by Microsoft Research
Powered by Kubernetes

• Alpha release available at
https://github.com/microsoft/DLWorkspace/

Documentation at https://microsoft.github.io/DLWorkspace/

• Note that DL Workspace is NOT a MS product/service.

It’s an open source toolkit, and we welcome contribution!

https://github.com/microsoft/DLWorkspace/
https://microsoft.github.io/DLWorkspace/

Deep Learning Workspace by Microsoft Research
Powered by Kubernetes

• “FreeFlow” CNI plugin from Microsoft Research
▪ Leverage shared memory and RDMA to improve network performance

▪ Higher throughput, lower latency, and less CPU overhead

▪ Transparent to the containers & the apps

▪ Deployed as DaemonSet

• Custom CRI & Scheduler: GPU-related resource scheduling on
K8s (Credits: Sanjeev Mehrotra from MS Research)
▪ Pods with no. of GPUs with how much memory

▪ Pods with no. of GPUs interconnected via NVLink, etc.

▪ Eventually may go into the device plugins

Resources

• Getting Started with Kubernetes on Azure
https://github.com/Azure/acs-engine
https://docs.microsoft.com/en-us/azure/container-service/kubernetes/

• Running Distributed TensorFlow on Kubernetes using ACS/ACS-
Engine
https://github.com/joyq-github/TensorFlowonK8s

https://github.com/Azure/acs-engine
https://docs.microsoft.com/en-us/azure/container-service/kubernetes/
https://github.com/joyq-github/TensorFlowonK8s

Resources (continued)

• Deep Learning Workspace powered by Kubernetes
https://github.com/microsoft/DLWorkspace/
https://microsoft.github.io/DLWorkspace/

• TensorFlow resources
https://www.tensorflow.org/performance/

https://eng.uber.com/horovod/

https://arxiv.org/abs/1704.04560

• FreeFlow: High Performance Container Networking
https://www.microsoft.com/en-us/research/publication/freeflow-high-performance-container-
networking-3/

https://github.com/microsoft/DLWorkspace/
https://microsoft.github.io/DLWorkspace/
https://www.tensorflow.org/performance/
https://eng.uber.com/horovod/
https://arxiv.org/abs/1704.04560
https://www.microsoft.com/en-us/research/publication/freeflow-high-performance-container-networking-3/

