
CNI, CRI, and OCI - Oh My!

Who are we ?

Elsie Phillips Paul Burt

This talk is
standards +
containers

What’s a standard?

Something those ISO folks
make

“Whatever the country,
whatever the language, we

are always ISO”

A standard we know:
Javascript

I hate javascript
(Why would you use that as your example?)

You could hate JS so much
more...

You could hate JS so much
more

You would hate JS so much
more...

The same way JS enables
multiple browsers to thrive

What’s a container?

What’s a container?
(Oh no, are these noobs really

doing this at Kubecon ?)

What is a container?

It’s a TAR file.

What is a container?

It’s a TAR file.

AKA

Containers are . . .
Cgroups
Chroot
Unshare
Nsenter
Bind mounts

TAR files +

Linux
 Magic

For More on WHAT containers are

Containers From
Scratch

By Eric Chiang

Best Practices for
Containerized
Environments

By Brian “Redbeard”

https://ericchiang.github.io/post/containers-from-scratch/
https://ericchiang.github.io/post/containers-from-scratch/
https://www.youtube.com/watch?v=gMpldbcMHuI
https://www.youtube.com/watch?v=gMpldbcMHuI
https://www.youtube.com/watch?v=gMpldbcMHuI

Why containers?
idk, why do ducks float?

Hell is other people’s
development environment

Hell is other people’s
development environment

CNI
Container Network Interface

Zoom,
Enhance!

CNI concerns itself only with network
connectivity of containers and removing
allocated resources when the container
is deleted.

CNI concerns itself only with network
connectivity of containers and removing
allocated resources when the container
is deleted.

CNI vs CNM
Muhammad Ali vs Joe Frazier

“...both are driver-based models, or
plugin-based, for creating and managing
network stacks for containers.”

“CNM is designed to support the Docker

runtime engine only. ”

“Kubernetes is a system that supports
multiple container runtimes, of which Docker
is just one.”

“ … voted to accept CNI (Container
Networking Interface) as the 10th hosted
project”

TL;DR of how it works
Ain’t nobody got time to read specs

The runtime creates a network
namespace

The runtime reads a JSON config

The runtime executes a plugin named
by the config (with the ADD command)

The plugin finds out what to do from
JSON streamed to stdin

The plugin does it’s thing

If there’s an error, the runtime tells the
plugin to delete (DEL)

Otherwise, the runtime cleans up (DEL)
at the end of the lifecycle

Notable developments this year

- IPv6 support

- plugin chaining

- port-forwarding

CNI
All the cool plugins are doing it

CRI
Container Runtime Interface

CRI
Container Runtime Interface

CRI
Container Runtime Interface“Docker and rkt were integrated directly and

deeply into the kubelet source code through
an internal and volatile interface.”

CRI Timeline

1.5 alpha out

1.6 Docker CRI gets beta + enabled by default

1.7 Docker CRI goes GAJun 30

Mar 28

Dec 12

2017

CRI Timeline

1.8
CRI test suite + CLI tools.

1.9
CRI stats stats stats!

Sep 29

Dec ??

That’s exciting...
In a Mom & Dad got me socks for X-mas

kind of way

Demo

CRI
We won’t need a different software

ecosystem for every container format?
Thank goodness.

OCI

and the journey to standards

An image format
A container runtime

A log collection daemon
An init system and process babysitter

A container image build system
A remote management API

An image format
A container runtime

A log collection daemon
An init system and process babysitter

A container image build system
A remote management API

An image format
... the thing we want to standardise

Mid 2014

Docker Image Format Circa 2014
● Fluid format and evolution

○ No specification, just implementation
○ No guarantees of interoperability for other tool writers

● Not content-addressable
○ No way to verify integrity or leverage CAS

● No name delegation/discovery (e.g. MX records)
○ Centralised/siloed distribution

● No mechanism for signing
○ No way to attest content

Dec 2014

App Container (appc)

appc image in a nutshell

● Image Format (ACI)
○ what does an application consist of?

● Image Discovery
○ how can an image be located?

● Content-addressability
○ what is the cryptographic id of an image?

● Signing
○ how is an image signed and verified?

April 2015

Docker v2.2 Image Format Circa 2015

● Versioned v2.0, v2.1, v2.2 schema
○ Still vendor-specific, but (mostly) documented!

● Content-addressable
● No name delegation/discovery
● Optional and separately-defined signing

Two separate worlds...

aka the "Container Wars"

June 2015-Present

OCI

● Define what a container is in an open way so
everyone can implement it
○ How to package, annotate, distribute, run, ...
○ Facilitate independent, interoperable tools

Why does OCI exist?

● Define what a container is in an open way so
everyone can implement it
○ How to package, annotate, distribute, run, ...
○ Facilitate independent, interoperable tools

● Unify the best ideas from Docker, appc, etc
○ Content addressability, composability, signing
○ End the so-called "Container Wars"

Why does OCI exist?

OCI Members

What makes up the
standard?

Two separate but connected specifications
● image-spec: what's in a container
● runtime-spec: how to run a container

The OCI standards

● Portable archive format
● Composed of:

○ image manifest
○ image index (optional)
○ filesystem layers
○ configuration

OCI Image Spec

● On-disk layout of a container
○ Extracted root filesystem and configuration, ready to

run
● Lifecycle verbs

○ create, start, kill, delete, state

● Multi-platform support
○ Shared general configuration
○ Windows/Solaris/Linux-specific bits

OCI Runtime Spec

What happened to appc?

Image formats: a summarised history
Docker v1 appc Docker v2.2 OCI

Introduced 2013 December 2014 April 2015 April 2016

Content-
addressable

No Yes Yes Yes

Signable No Yes, optional Yes, optional Yes, optional

Federated
namespace

Yes Yes Yes Yes

Delegatable DNS
namespace

No Yes No Yes

So, that’s it?

Lol, nope
Lots to be done still

Standards will continue to
evolve

Standards naturally lead to
more options for users

And that’s something worth
being passionate about.

Check out Open Cloud
Services on

CoreOS.com/blog

