
Building an Edge Computing Platform for
Network Services Using Cloud Native
Technologies
Stephen Wong, FutureWei Technologies, Inc. 

Agenda

1.Problem We Looked at
2.Framework That We Came Up with
3.Demo
4.Future Roadmap

NFV in the Context of Cloud Native Computing

• Who are we?
• OPNFV contributors, focusing on examining cloud native computing’s relevancy in NFV use cases

• NFV —- VNF
• High-level definition of NFV: idea that majority of network functions could be provided by software

running on top of COTS servers
• High-level definition of VNF (virtual network function) —- a piece of software responsible to run a single

network function
• The problem we are looking at: can we build VNFs as cloud native applications? If we can, we get

benefits of:
• Scalability
• Resiliency / Fault Tolerance
• Composability and reusability
• Ease of development and deployment

Edge Network Services Applicability

• Edge use cases are suitable for cloud native VNFs due to:
1.Resource constraints: therefore micro-service and

containerization provide more optimal resource utilizations
2.High Cost of Edge Maintenance: resiliency and fault tolerant

nature of cloud native applications would be beneficial
3.Ease of Deployment: suitable for remote push of new images of

components, allows rollback if new component fails locally
4.Replicable: entire deployment can be replicated to different sites

Two Gaps in Building VNF as Cloud Native Application

1.VNF by nature deals with transport traffic, as opposed to requests destined to a service or node in cluster:
• A subset of these network functions act similarly to a transparent proxy, i.e., something which does not

expose endpoint to users, but system needs to route traffic to
• This is typically referred to as “service insertion”
• At least two modes of operations: redirect traffic (traffic now routed to service) or tap mode (traffic mirrored

to service), and good to provide programmability from the individual microservicres: deny, or QoS (rate
limiting)

• Bring Your Own Datapath
2.VNFFG (VNF Forwarding Graph)

• An orchestration function where operator can specify the chain of VNFs user traffic would traverse
• The realization of an FG is typically a data path function
• For cloud native VNF, this forward graph basically becomes a service graph in a service mesh

• The main difference being, that the service graph isn’t built into the application, but is operator defined

Terminology

1. CNF: Cloud-native Network Function —- defined by operator,
made up of a list of µsrvs (microservices)

2. Client: initiates traffic which would pass through the edge node
3. µsrv (microservice): a unit of compute service which exposes a

set of APIs, the “lego pieces” that would make up a CNF
4. Operator: defines and deploys CNFs

Architecture of Our Approach

Edge Agent

Central
Management

on Cloud

Data Path Manager

CNF 1

CNF 2

MS-
1

MS-
2

MS-
3

MS-
4

MS-4 Event-
Handler

Events

Technical Descriptions

1. Event-driven Model
1) Event handler running as sidecar in the same pod as µsrvs
2) µsrvs expose a set of events, which operators implement code to handle events they selected and

dynamically build and push that event-handler to co-exist with the µsrv
3) An SDK would be provided by the framework. Operators invoke SDK calls in their custom event handlers,

then internally those SDK calls would map to gRPC / REST API calls
4) Operators therefore are implementing programs to build service graph

2. Programmable Datapath
1) Takes network policy rules and program data path engine accordingly
2) Rule format : { <ip> port : {redirect | copy} => [list of labels]}
3) Utilizes eBPF (IOVisor bcc) to load BPF code

• Possibly allowing µsrv to inject its own datapath
4) Datapath Manager exposes gRPC APIs, any µsrv (via event handler) can invoke gRPC to program datapath

Demo Description

1. Operator uses the portal to define a CNF (edgesecurity —- protecting clients) which includes multiple µsrvs
(http-proxy, policy-mgr, content-inspect), each µsrv publishes a set of events, and operator can choose to
implement these event-handlers and customized them via a set of Python SDK methods (also specify network
policy rules to direct traffic to the http-proxy), and deploy the CNF to a target edge node

2. Previously non running µsrvs (http-proxy, policy-mgr, content-inspect) now running on edge node, with the new
event-handler (per µsrv) built/pushed running alongside the core µsrv (running as a container)

3. Client sends an HTTP request —- the transport traffic is being redirected to the specified pod associated with
the datapath policy’s ‘redirect’ action’s label; and subsequently the call sequence matches what the operator
specified

4. Operator updates portal to add a µsrv (anti-virus) with updating a previous SDK call (anti_virus.scan SDK call)
from an existing event handler (inspect_done event from content-inspect)

5. After CNF (re)deploy, the call flow now goes to new µsrv (anti-virus) with the correct RPC
6. Operator wants to narrow what type of traffic should get virus scan (as opposed to everything), thus updating

the event_handlers (remove anti_virus.scan from content-inspect’s inspect_done, then add it as a condition
under policy_check from policy-mgr)

Demo

Demo Flow —- Deploy
Client Operator Cloud

 Mgmt
Edge
REST
Server

Edge
Agent

DPM http
proxy

Policy
Mgr

Content
Inspect

AntiVirus
Create CNF

CNF, µsrvs,
handler code gRPC (deploy

CNF)

deploy-<CNF>

Create

µsrv starts

Add dp rule
HTTP Request http-proxy ev-hdlr

event gRPC

HTTP Response

policy-mgr ev-hdlr

event gRPC

Demo Flow —- Update Deployment
Client Operator Cloud

 Mgmt
Edge
REST
Server

Edge
Agent

DPM http
proxy

Policy
Mgr

Content
Inspect

AntiVirus
Create CNF

CNF, µsrvs,
handler code gRPC (deploy

CNF)

deploy-<CNF>

Create

µsrv starts

Add dp rule
HTTP Request http-proxy ev-hdlr

event gRPC

HTTP Response

policy-mgr ev-hdlr

event gRPC

content-inspect ev-hdlr
event

gRPC

Demo Flow —- Change AV Invocation Logic
Client Operator Cloud

 Mgmt
Edge
REST
Server

Edge
Agent

DPM http
proxy

Policy
Mgr

Content
Inspect

AntiVirus
Create CNF

CNF, µsrvs,
handler code gRPC (deploy

CNF)

deploy-<CNF>

Create

µsrv starts

Add dp rule
HTTP Request http-proxy ev-hdlr

event gRPC

HTTP Response

policy-mgr ev-hdlr

event gRPC

content-inspect ev-hdlr
event

gRPC

Roadmap (1): Data Collection

• For edge use cases, it is important to generate rich set of collectable data
• For filtering, allow software-defined filters for what data is being sent to

centralized management
• As networking solution, network tracing is important

• An important reason why eBPF is chosen for datapath engine
• Particularly IOVisor bcc comes with a rich set of kernel tracing code

• Data correlation: everything throughout the stack (OpenTracing calls, eBPF
map, redis objects…etc) all have exact same key (the cookie parameter
being passed throughout the events / gRPC calls), thus allowing us to bundle
related data from various sources

Roadmap (2): Multiple Event Handlers per MicroService

• A major drawback of the current/demo implementation is that the µsrvs
are non-sharable, i.e. how the event_handler is invoked per pod makes
each µsrv only usable by one CNF

• Moving forward, to allow µsrv to be used by multiple CNFs, cookie
filtering value can be used, and event channel can be pub/sub

• Request side needs to make a decision on which CNF a session belongs
to (i.e., and most commonly, by client or user id), such info needs to be
propagated to ALL event_handler on all associated µsrv pods

• Programmable session => CNF correlation?

Roadmap (3): Legacy VNF Integration

• There exists a rich and widely deployed set VNFs used by various operators —- it is naive and irresponsible to believe VNFs
needed to be rewritten to fit this cloud native model

• The two requirements for a µsrv in this framework:
1. Event generation (and synchronous or asynchronous handlers for those events)
2. gRPC request handling

• The above requirements do assume the VNFs have some degree of programmability
• One solution to incorporate legacy VNF in this framework would be having another container per pod as an adapter to

communicate with legacy VNF (as µsrv). The adapter would interface with the legacy VNF (ex: SNMP, CLI) whilst implementing
a gRPC server with event generating logic —- in fact, the AV µsrv is implemented this way

Adapter

Event Handler

Legacy VNF as containerSNMP

Events

Roadmap (4): Cloud Native Computing Ecosystem

• Service Mesh: If scaling up is needed, this framework matches well with the current
service mesh architecture (such as Istio)

• As the framework utilizes gRPC for request to µsrvs, and the SDK calls are
implemented as gRPC client calls, this framework naturally fits into HTTP based
service mesh

• Utilizing the “service graph” tool from Istio would greatly increase visibility to operators
• The Tracing shown in demo was quite ad-hoc, but did demonstrate the importance of call

tracing in this framework
• Will examine use of OpenTracing APIs and possibly Jaeger as tracer

• With cloud native VNF, we can leverage existing k8s / cloud native application oriented CI/
CD solutions like Spinnaker

Information

• Project Clover under OPNFV (https://wiki.opnfv.org/display/CLOV)
• Clover intends to investigate the issues and projects associated

with building VNFs as cloud native applications
• Slack channel: clover-project
• Email Address: stephen.kf.wong@gmail.com

THANK YOU!!!

https://wiki.opnfv.org/display/CLOV
mailto:stephen.kf.wong@gmail.com

