
@mfdii

Survey of Container
 Build Tools

Michael Ducy
Community & Evangelism - Sysdig

@mfdii

Agenda
● How containers should be used
● Problems with Dockerfile paradigm
● Specific tools
● Summary

@mfdii

About me

Spent the last 4.5 years at Chef

Cloud, Automation, Performance & Capacity, Ops

Ask me about goats (goatcan.do)

Triton, Maroon, Buckeye

@mfdii

Review of “What’s a Container”

Cgroups
Control what a process can use.
● Memory
● CPU
● Blkio
● Cpuacct
● Cpuset
● Devices
● Net_prio
● Freezer

Namespaces
Control what a process can see.
● PID
● Mount
● Network
● UTS
● IPC
● User
● Cgroup

Thanks to Jess Frazelle (@jessfraz) for this slide https://goo.gl/7fVKFa

@mfdii

Containers vs. Zones vs. Jails vs. VMs

Thanks to Jess Frazelle (@jessfraz) for this slide https://goo.gl/7fVKFa

Containers

Cgroups

Namespaces

LSMs

Zones

First class

concept

Jails

First class

concept

VMs

First class

concept

Read more about this here: https://blog.jessfraz.com/post/containers-zones-jails-vms/

@mfdii

What’s a Container

@mfdii

Problem with the Dockerfile paradigm
Builds aren’t deterministic or reproducable.

Programmability through Bash

Easy to turn a container image into a “VM”

Lack of visibility into what’s really in the final image

Bottom up approach vs application down

@mfdii

Real World Numbers Show the Problem

7 to 1 container to host ratio (DataDog survey, April 2017)

10 to 1 container to host ratio(Sysdig survey April 2017)

@mfdii

Base OS Image Size

https://anchore.com/blog/breakdown-of-operating-systems-of-dockerhub/

@mfdii

Official Image Size

https://anchore.com/blog/breakdown-of-operating-systems-of-dockerhub/

@mfdii

Public Image Size

https://anchore.com/blog/breakdown-of-operating-systems-of-dockerhub/

@mfdii

What can we infer?

@mfdii

What can we infer?

@mfdii

What can we infer?

Nobody knows how to package
their application in a container.

@mfdii

Lots of choices
Traditional Build Tools

● buildah
● nixos-container
● ansible-container
● Smith

● Distroless

Source-to-Container Tools

● Buildkit
● Source-to-Image (s2i)
● Habitat

@mfdii

buildah

@mfdii

buildah
Project from Project Atomic - https://github.com/projectatomic/buildah

OCI and Docker Image Formats

Doesn’t require a container runtime to build containers.

Allows for some _interesting_ uses which are 0_0 LOLWUT

Not deterministic.

https://github.com/projectatomic/buildah

@mfdii

nixos-container
Builds containers based on NixOS

Imperative and Declarative approaches

Containers can be auto-rebuilt when host OS updates

Ability to get very granular with software installed in a container due to Nix’s
packaging approach

@mfdii

nixos-container

@mfdii

nixos-container

@mfdii

ansible-container
Declarative approach (mostly)

Allows you to build multiple containers from one container.yml (like
docker-compose)

Allows you to take advantage of Ansible expertise/playbooks you already have

https://github.com/ansible/ansible-container

@mfdii

Smith

@mfdii

Smith
Focuses on building “microcontainers”

Principles of microcontainers

1. A microcontainer only contains the process to be run and its direct dependencies.
2. The microcontainer has files with no user ownership or special permissions beyond the executable

bit.
3. The root filesystem of the container should be able to run read-only. All writes from the container

should be into a directory called /write. Any unique config that an individual container instance will
need should be placed into a directory called /read. Ephemeral files such as pid files can be written
to /run.

@mfdii

Smith
Declarative (mostly)

Builds containers that are significantly smaller (httpd built with Smith is 3% of
Dockerhub image)

Can use yum packages or Docker base images for source of binaries

https://hackernoon.com/how-to-build-a-tiny-httpd-container-ae622c37db39

@mfdii

What you want in a container

@mfdii

Distroless
Declarative builds leveraging Google’s Bazel

‘"Distroless" images contain only your application and its runtime dependencies.
They do not contain package managers, shells any other programs you would
expect to find in a standard Linux distribution.’

Provides stripped down base images

Support for language runtimes: Java, Python, Go, C, Node, dotnet

@mfdii

Source-to-Image
“Source-to-Image (S2I) is a toolkit and workflow for building reproducible Docker
images from source code.”

One image can be used for builds, one can be used to run the artifact.

Allows build environments to be tightly versioned and controlled for reproducibility

Allows for control/security of the build environment through the use of build
containers

@mfdii

Source-to-Image

@mfdii

Buildkit
“BuildKit is a toolkit for converting source code to build artifacts in an efficient, expressive
and repeatable manner.”

Frontend’s specify a definition for how your software is built.

Buildkit takes this human readable definition (frontend) and transforms it into low level build
(LLB) definition.

Exporters allow build artifacts to be exported in a variety of formats not just container
formats.

Focuses on “How can we create generic primitives for a build system?”

https://blog.mobyproject.org/introducing-buildkit-17e056cc5317

@mfdii

Buildkit

@mfdii

Habitat

@mfdii

Habitat

@mfdii

Habitat

BUILD DEPLOY SUPERVISE

▪ Consistent process for
packaging all apps across all
architectures.

▪ Scaffolding for key languages:
Node.js, Ruby, Go, Java.

▪ Built in supervisor for Service
Discovery, Templated Configs,
Clustering Topologies, Health
Check APIs, and more

BUILD DEPLOY MANAGE

▪ Export to variety of different
formats:

Docker
ACI
CloudFoundry
Kubernetes
Mesos
tar

@mfdii

Habitat Build Service
Habitat provides a cloud native build and packaging system

HABITAT BUILDER

Developer adds a plan.sh to define the build phases of
their software.

Scaffolding for common languages can be used provides
sane defaults.

Developer explicitly declares dependencies, required
backing services, and what services/ports are exposed.

Runtime lifecycle hooks can be defined for the application
(start, reconfigure, etc).

Templated configuration files can be included.

Habitat Builder watches a GitHub repository for changes,
when code is merged a build is performed based on the
repo’s plan.sh.

Build artifact includes runtime lifecycle hooks,
configuration, and application binaries or code.

Build artifact metadata includes dependent services,
exposed services/ports, and required dependencies.

Artifacts are stored in a Habitat Builder depot.

USER PLAN
PUBLIC
DEPOT

PRIVATE
DEPOT

@mfdii

Lots of choices
● buildah

○ Still coupling yourself to the operating system paradigms
● nixos-container

○ Niche OS, with it’s own insecure container model. Have to eat NixOS
● ansible-container

○ Great if you’ve committed to Ansible.
○ Ansible Service Bus for stateful services

● Smith
○ Microcontainers are what you want (++)
○ Janky to pull apart container images and still leverages OS package managers (to an

extent)
● Distroless

○ Removes the OS (++), very language specific
○ Bazel is not the most approachable tool and real world examples are minimal

@mfdii

Lots of choices
● Buildkit

○ Very interesting approach to solve the problem of building software in general.
○ Versioned build environments possible
○ Still too early, examples sparse, frontends for languages non-existent

● s2i
○ Versioned, secured build environments
○ Library of build/run images but built on OS paradigm

● Habitat
○ Easily describes software builds in BASH
○ Export formats for multiple platforms (++)
○ Does the right thing to determine what a build artifact needs to run
○ Have to eat the Supervisor which doesn’t fit with Kubernetes paradigms
○ Software libraries provided OOTB are not well maintained

@mfdii

Summary
Container Build Tools still have a long way to go.

Each tool has ++ and --

Some tools sacrifice “best practice” for approachability

Some tools make things overly complex

What do we need?
● Buildpack type model for Source Code building
● Declarative container build manifest generated from the build
● Exporter to create container image of choice with only the app and deps

@mfdii

Thank you

Slides:
https://www.slideshare.net/MichaelDucy/survey-of-container-build-tools

ALSO Sysdig is hiring

https://sysdig.com/jobs/

https://www.slideshare.net/MichaelDucy/survey-of-container-build-tools
https://sysdig.com/jobs/

