
Raw Block Volume in Kubernetes
Mitsuhiro Tanino, Principal Software Engineer, Hitachi Vantara

Agenda

• Who am I

• Background

• Raw Block Volume Support

• Usage of Raw Block Volumes

• Implementation deep dive

• Future Work

※Slide is available from Kubecon’s sched site.
2

Who am I

• Software engineer at Hitachi Vantara(previously Hitachi
Data Systems)

• Linux support service team for 8 years, especially cpu,
memory and timer related area.

• Contributed OpenStack Cinder project for three years.
I’ve done many bugfixes and added few features.

• From this year, I started to contribute Kubernetes sig-
storage, I’m trying to enhance reliability and stability for
iSCSI and FC drivers and also contributing Block
Volumes Support feature development.

3

Background

• By using Kubernetes storage feature, user
can create/delete persistent volume with their
pod.

• When pod with volume is created, storage
plugin creates a volume and create a
filesystem on top of it. Therefore, currently
these volumes must be consumed via
filesystem inside the pod.

• This means that user can’t consume raw
block volume directly from their applications
without filesystem.

DB Application Pod

Filesystem

MountPath:
- /var/lib/data

Storage Plugin

PV

PV

4

Background

• Benefits of raw block volume are;

- Enable users to choose appropriate type of volume for their
applications such as ‘MariaDB’, ‘HiRDB’(*1), etc.

- Provide consistent I/O performance and low latency compared to
filesystem volume, especially enterprise ‘Fibre Channel’, ‘iSCSI’
storage and ‘Local SSD’ disk are suitable for raw block volume use-
case.

- At production system, raw block is essential functionality.

- In addition, Container Storage Interface(CSI) defines to support both
file volume and block volume capabilities.(CSI plugin is alpha at v1.9)

*1: HiRDB: Hitachi’s RDBMS 5

• Current workflow: Pod with Filesystem Persistent Volume

Problem

Backend Storage

User

Pod, Claim

(1)User requests a Pod with Persistent Volume Claim

(2)PV-Binder binds requested PVC and pre-

provisioned Persistent Volume

(3)Storage plugin attaches PV to Kubelet node.

PV is recognized as /dev/sda on node. Also plugin

creates filesystem on top of /dev/sda if not exist,

then mount it to root FS on kubelet node,

(4)Kubelet starts an application Pod.

During pod creation, the mount point is passed

into container’s mountPath: /var/lib/data

Kubelet node

(1) Request

DB Application Pod

Filesystem

/dev/sda

MountPath:
/var/lib/data

Storage Plugin

PV
Persistent
Volume

(2) Bind (3) Attach
Mount

(4) Start
Pod

Kubelet

6

• Current workflow: Pod with Filesystem Persistent Volume

Problem

Backend Storage

User

Pod, Claim

(1) User requests a Pod with pre-provisioned persistent
volume

(2) Dynamic Provisioner creates a new Persistent Volume
from backend storage

(3) Storage plugin attaches PV to Kubelet node.
PV is recognized as /dev/sda on node.
Filesystem is created on top of /dev/sda automatically

(4) Kubelet starts an application Pod

(5) PV is mounted to kubelet node, then the mount point
is passed into pod’s mount point: /var/lib/data

Kubelet node

(1) Request

DB Application Pod

Filesystem

/dev/sda

MountPoint:
/var/lib/data

Storage Plugin

PV
Persistent
Volume

(2) Bind

(3) Attach

(5)
Mount PV

(4) Start
Pod

Kubelet

Following components can’t handle block type of volume.
They only support Filesystem type volume at Kubernetes v1.8.

• Persistent Volume, Persistent Volume Claim

• kube-apiserver, kube-controller-manager, kubelet

• Storage Plugin

7

Problem

• Today’s workarounds

• When user creates a pod with privileged
option, all block devices on kubelet node
are exposed to a container.

• In order to use privileged option, it requires
‘ALLOW_PRIVILEGED=true’ for
Kubernetes cluster.

• This isn’t recommended way since
privileged container may cause serious
security problem.

apiVersion: v1
kind: Pod
metadata:
name: privileged-pod

spec:
containers:
- name: privileged-container
The container definition
...
securityContext:
privileged: true

8

Raw Block Volume Support

New feature for solution

• Raw Block Volume Support (v1.9, alpha feature)

• New API support

• ‘volumeMode’ API for ‘PV’ and ‘PVC’

• ‘volumeDevices’ API for ‘Pod definition’

• Plugin support

• ‘Fibre Channel plugin’ supports raw Block Volume as a reference
driver(Only support pre-provisioned PV)

• Dynamic Provisioning support

• Spec is under discussion.

• But we confirmed our FC external-provisioner (not OSS) works
together with updated FC plugin. 10

Backend Storage

User

Pod: volumeDevices
Claim: volumeMode

(1)User requests a Pod with volumeDevices, and

PVC with volumeMode = Block

(2)PV-Binder binds requested PVC and pre-

provisioned PV with volumeMode = Block

(3)Storage plugin attaches the PV to Kubelet node.

PV is recognized as /dev/sda on node.

Plugin doesn’t create filesystem.

(4)Kubelet starts a DB application Pod.

During pod creation, the Block PV is passed to

the Pod as /dev/sda (or any user defined

devicePath)

Kubelet node

(1) Request

DB Application Pod

/dev/sda

devicePath:
/dev/sda

Block PV
PV:

volumeMode

(2) Bind
(3) Attach

(4) Start Pod

Storage Plugin
(Block Volume

Support)

Kubelet
(Block Volume

Support)

New feature for solution

• New workflow: Pod with Block Persistent Volume

11

Usage of Raw Block Volumes

Configuration for services

• Enable feature-gates

• Block Volume is ‘alpha’ feature at v1.9

• Admin needs to configure ‘--feature-gates=BlockVolume=true’ for

services(‘kubelet’, ‘kube-api-server’, ‘kube-controller-manager’, etc)

to enable BlockVolume

• Without using feature-gates definition, volumeMode and

volumeDevices API fields are not accepted.

13

Block Volume Definition

• Persistent Volume definition

apiVersion: v1

kind: PersistentVolume

metadata:

name: block-pv001

spec:

capacity:

storage: 1Gi

accessModes:

- ReadWriteOnce

volumeMode: Block

persistentVolumeReclaimPolicy: Retain

fc:

targetWWNs: ['28000001ff0414e2']

lun: 0

• The ‘volumeMode’ API filed supports two
volume modes

• Filesystem

• Block

• Admin can define expected usage of
volume through volumeMode

• If volumeMode is not specified, the PV is
treated as filesystem volume as same as
existing behavior

14

Block Volume Definition cont.

• Persistent Volume Claim definition

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

name: block-pvc001

spec:

accessModes:

- ReadWriteOnce

volumeMode: Block

resources:

requests:

storage: 1Gi

• The ‘volumeMode’ API field supports two
volume modes

• Filesystem

• Block

• User can define an expected mode of volume
through PVC’s volumeMode.

• If volumeMode is not specified, PVC requests
a volume with volumeMode=Filesystem as
same as existing behavior.

15

• Pod definition
apiVersion: v1

kind: Pod

metadata:

name: blockvolume-pod

spec:

containers:

- name: blockvolume-container

The container definition

…

volumeDevices:

- name: data

devicePath: /dev/xvda

volumes:

- name: data

persistentVolumeClaim:

claimName: block-pvc001
readOnly: false

• The ‘volumeDevices’ API field is supported to
define block volume in pod.

• ‘name’ is volumes name.

• ‘devicePath’ is a device path inside container.

• ‘readOnly’ parameter can be define in Pod
definition. If this parameter is true, The volume is
passed as read only block volume.

• These two combination of parameters are
available.

• volumeDevices and volumeMode ‘Block’

• volumeMounts and volumeMode ‘Filesystem’

Block Volume Definition cont.

16

VolumeMode binding rule for
pre-provisioned PV

• To support raw block volume, we added new
binding rule into persistent volume controller.

• There are three conditions of volumeMode,
unspecified, Filesystem and Block.

• Unspecified is handled as Filesystem to keep
compatibility with existing behavior

• If a user requests a raw block volume through
the PVC.volumeMode field, it can only bind to
PV which has same volumeMode.

'pvc.volumeMode' == 'pv.volumeMode'.

PV volumeMode PVC volumeMode Result

1 unspecified unspecified BIND

2 unspecified Filesystem BIND

3 unspecified Block NO BIND

4 Filesystem unspecified BIND

5 Filesystem Filesystem BIND

6 Filesystem Block NO BIND

7 Block unspecified NO BIND

8 Block Filesystem NO BIND

9 Block Block BIND

17

• New field ‘VolumeMode’ is shown in ‘describe PV/PVC’

• volumeMode is shown only if feature-gate is enabled.

% kubectl describe pv/block-pv001
Name: block-pv001
Labels: <none>
Annotations: pv.kubernetes.io/bound-by-controller=yes
StorageClass: fast
Status: Bound
Claim: default/block-pvc001
Reclaim Policy: Retain
Access Modes: RWO
VolumeMode: Block
Capacity: 1Gi
Message:
Source:
The storage definition
...

% kubectl describe pvc/block-pvc001
Name: block-pvc001
Namespace: default
StorageClass: fast
Status: Bound
Volume: block-pv0001
Labels: <none>
Annotations: pv.kubernetes.io/bind-completed=yes

pv.kubernetes.io/bound-by-controller=yes
Capacity: 1Gi
Access Modes: RWO
VolumeMode: Block
Events: <none>

Quick glance of block PV/PVC

18

• New field ‘Devices’ is shown in ‘describe pod’

• This shows devicePath inside the container and volume name
% kubectl describe po/blockvolume-pod
Name: block-pod
Containers:

The container definition
...
Mounts:

/var/run/secrets/kubernetes.io/serviceaccount from default-token-kdjq8 (ro)
Devices:

/dev/xvda from data
Volumes:

data:
Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same namespace)
ClaimName: block-pvc001
ReadOnly: false 19

Quick glance of running pod with block
volume

• Device ‘/dev/xvda’ is created inside the pod.

• User can issue I/O to block device directly inside the pod.

% kubectl exec -it blockvolume-pod -- ls -la /dev/
total 0
drwxr-xr-x 5 root root 400 Oct 8 22:23 .
drwxr-xr-x 21 root root 242 Oct 8 22:23 ..
…
crw-rw-rw- 1 root root 1, 9 Oct 8 22:23 urandom
brw-rw---- 1 root disk 7, 2 Oct 8 22:23 xvda
crw-rw-rw- 1 root root 1, 5 Oct 8 22:23 zero

% kubectl exec -it blockvolume-pod -- dd if=/dev/zero of=/dev/xvda bs=1024k count=100
100+0 records in
100+0 records out
104857600 bytes (105 MB, 100 MiB) copied, 0.188629 s, 556 MB/s

Quick glance of running pod with block
volume

20

Implementation deep dive

Implementation deep dive

• Kubernetes Volume Plugin interface

• Directories under kubelet node
• Pod volume directory

• Plugin directory

• Avoid silent volume replacement

22

Kubernetes Volume Plugin interface

• Implement golang interfaces

• Mounter / Unmounter (basic function to mount / unmount volume)

• Optionally
• Attacher / Detacher (if plugin has cloud provider)

• Provisioner / Deleter (if plugin provides dynamic provisioning)

• Recycler (if plugin provides volume scrubbing/recycling feature)

• BlockVolumeMapper

• BlockVolumeUnmapper
New interfaces

23

Kubernetes Volume Plugin interface

• Mounter/Unmounter interface (filesystem volume)
• Make data source(volume, block device, network share, etc) available

as a directory on kubelet node’s root Filesystem directory.

• Then volume is mounted into container by kubelet’s container runtime
interface

• Methods always called from kubelet node(kubelet binary)

• Methods
• SetUpAt(…) : Attach and Mount volume to kubelet node

• TearDownAt(…) : Unmount and Detach volume from kubelet node

• ..
24

Kubernetes Volume Plugin interface

• BlockVolumeMapper/Unmapper interface (block volume)
• Make data source(volume, block device) available as block device on

kubelet node.

• Then the block device is passed into container by container runtime
interface on kubelet node.

• Methods always called from kubelet node(kubelet binary)

• Methods
• SetUpDevice(…) : Attach volume to kubelet node…(*1)

• TearDownDevice(…) : Detach volume from kubelet node…(*1)

(*1): If a plugin has attacher/detacher interface, these methods could be no operation
because attach and detach operations are done by pv-controller. 25

Implementation deep dive

• Kubernetes Volume Plugin interface

• Directories under kubelet node
• Pod volume directory

• Plugin directory

• Avoid silent volume replacement

26

Directories under kubelet node

• Role of directories under kubelet node
• Pod volume directory

• This directory is used to mount a formatted volume per pod, then
this directory is mounted into container.

• Plugin directory
• This directory is used to store plugin’s specific configurations, and

also formatted volume is mounted on this directory.

• ex. iSCSI plugin and RBD plugin store their connection information
to the plugin directory.

27

Using these information, cluster admin can find which block
device is used on which application pod for trouble shooting.

Directories under kubelet node

• Role of directories under kubelet node
• Pod volume directory

• This directory is used to mount a formatted volume, then this
directory is mounted into container

• Plugin directory
• This directory is used to store plugin’s specific configurations, and

also formatted volume is mounted on this directory.

• ex. iSCSI plugin or RBD plugin store their connection information to
the plugin directory.

28

• However, about the block volume case, the volume isn’t

formatted. Therefore they can’t be mounted to these

directories.

• Instead, kubelet stores symbolic link which is associated to

block device(such as /dev/sdX) to these directories.

• Admin can find physical block device corresponding to

PV/PVC by checking the Symbolic Link.

Pod volume directory on kubelet node
with FC plugin

• BlockVolumeMapper/Unmapper

• Each pod has own pod volume directory.

• /var/lib/kubelet/pods/{pod
uuid}/volumeDevices/kubernetes.io~fc/

• Symbolic link associated to block device such as
/dev/sdX is stored under pod volume directory.

• /var/…/volumeDevices/kubernetes.io~fc/{pvNa
me symlink} -> /dev/sdb

• If a pod has multiple volumes, multiple symbolic
links with volume name are stored under the
directory

• Mounter/Unmounter

• Each pod has own pod volume directory.

• /var/lib/kubelet/pods/{pod uuid}/kubernetes.io~fc/

• Volume is formatted and mounted under
volumeName dir.

• /var/lib/kubelet/pod/{pod
uuid}/kubernetes.io~fc/{pvName}/

• If a pod has multiple volumes, multiple volume
directories are created under pod volume
directory.

Admin can find physical block device by
checking the Symbolic Link

Admin can find physical block device by
checking Mount Point

Plugin directory on kubelet node
with FC plugin

• BlockVolumeMapper/Unmapper

• Each volume has own plugin directory.

• /var/lib/kubelet/plugins/kubernetes.io/fc/volumeD
evices/{wwn-lun-0}/

• Symbolic link associated to block device such as
/dev/sdX is stored under plugin directory.

• /var/…/fc/volumeDevices/wwn-lun-0/{pod uuid
symlink} -> /dev/sdb

• If multiple pods use a same volume, multiple
symbolic links with pod uuid name are stored
under the directory

• Mounter/Unmounter

• Each volume has own plugin directory.

• /var/lib/kubelet/plugins/kubernetes.io/fc/{wwn-lun-
0}/

• Volume is formatted and mounted under plugin
dir.

• /var/lib/kubelet/plugins/kubernetes.io/fc/{wwn-lun-
0}/

• Even ff multiple pods use a same volume, only
one plugin directory per volume is created.

Implementation deep dive

• Kubernetes Volume Plugin interface

• Directories under kubelet node
• Pod volume directory

• Plugin directory

• Avoid silent volume replacement

31

Avoid block volume silent replacement

• Problem
• We found that container runtime doesn’t take a lock to attached block

volume even if container is online. Therefore volume is possibly
replaced silently to another volume even if application is issuing I/O to
the block volume inside the container.

• Solution
• We added a logic to open device file of Block volume such as /dev/sdX

via loopback device. This takes device lock using file-descriptor, then
user can avoid device silent replacement.

• Cluster admin may notice that there are many loopback devices on
kubelet node if user uses raw block volumes.

32

Future work

Future work

• Dynamic provisioning for raw block volumes, Need to finalize
spec at v1.10

• Add e2e test cases

• Raw block support for remaining volume plugins:
• Local volumes

• GCE PD

• AWS EBS

• iSCSI and iSCSI external provisioner

• RBD

• Gluster

• …. Your contribution is welcome!
34

Wrap-up

• Raw Block Volume is introduced to v1.9 as alpha feature.

• New API field

• ‘volumeMode’ API for ‘PV’ and ‘PVC’ (Filesystem/Block)
• ‘volumeDevices’ API for ‘Pod definition’ (name and devicePath)

• Plugin support

• ‘Fibre Channel plugin’ supports raw Block Volume as a reference
driver

• New binding rule

• PVC and PV are bound if 'pvc.volumeMode' == 'pv.volumeMode'.

• Dynamic Provisioning support is under discussion
35

References

• Spec
• (#1265) Block Volume Support Spec…………………… [merged]

• API, Controller, Kubelet, etc changes

• (#50457) API Change…………………………………….. [merged]

• (#53385) VolumeMode PV-PVC Binding change……… [merged]

• (#51494) Container runtime interface change, ………... [merged]

volumemanager changes, operationexecutor changes

• (#55112) Block volume: Command line printer update... [merged]

• - Block Volume support for Plugins

• (#51493) FC plugin update…………............................... [merged]

• (#54752) iSCSI plugin update………............................ -> ongoing, v1.10

• (#55899) AWS plugin update……………………………. -> ongoing, v1.10

• (#56651) RBD plugin update……………………………. -> ongoing, v1.10

• Local plugin update……………………………………… Spec update merged
36

https://github.com/kubernetes/community/pull/1265
https://github.com/kubernetes/kubernetes/pull/50457
https://github.com/kubernetes/kubernetes/pull/53385
https://github.com/kubernetes/kubernetes/pull/51494
https://github.com/kubernetes/kubernetes/pull/55112
https://github.com/kubernetes/kubernetes/pull/51493
https://github.com/kubernetes/kubernetes/pull/54752
https://github.com/kubernetes/kubernetes/pull/555899
https://github.com/kubernetes/kubernetes/pull/56651

Disclaimer

• Kubernetes is a registered trademark of The Linux Foundation.

• MariaDB is a trademark of the MariaDB Foundation.

• GCE is a trademark of the Google Inc.

• Amazon Web Services is a trademark of Amazon.com, Inc. or its
affiliates in the United States and/or other countries.

• Gluster is a trademark of the Red Hat, Inc.

• All other trademarks are the property of their respective owners.

37

Appendix: New interface for plugin:
implementation matrix

Interface Method Summary

1 BlockVolumeMapper SetUpDevice() Attach volume to kubelet node

2 BlockVolumeUnmapper TearDownDevice() Detach volume from kubelet node

3

BlockVolumePlugin

NewBlockVolumeMapper() Create blockVolumeMapper object

4 NewBlockVolumeUnmapper() Create blockVolumeUnmapper object

5 ConstructBlockVolumeSpec() Create volumeSpec

6
BlockVolume

GetGlobalMapPath() Get global map path

7 GetPodDeviceMapPath() Get pod device map path

