Accelerating Humanitarian Relief with Kubernetes

Building a highly available native spark pipeline on k8s

Erik Schlegel - Microsoft – Principal Engineering Manager Christoph Schittko - Microsoft – Principal Engineer

Us

Erik Schlegel

- Principal Engineering Manager
- Focus on emerging technology projects with innovative partners
- github.com/erikschlegel
- @erikschlegel1

Christoph Schittko

- Principal Engineer
- Chronic Early Adopter
- github.com/xtophs
- @CTheArchitect

What we do

PARTNER with innovators to unblock and accelerate their ideas leveraging both open source and Microsoft technology.

GENERALIZE some or all of the solution as patterns, reference designs, or open source software.

SCALE our learning and patterns through product team collaboration, blogs, code stories, and open source communities.

UN Challenges

- Humanitarian aid plans are manually composed
- Resulting in imprecise aid relief plans
- Aid planners monitor 400+ data sources daily
- Impacted areas often have limited accessibility
- Slow turnaround

Project Fortis: Goals

- Accelerate the construction of aid planning
- Improve its data accuracy
- Provide deeper insights and trends
- Real-time analytics
- More intelligence and insight to enable better forecasting

Functional Architecture

Spark Cluster Managers

GraphX	SparkSQL		Spark ML	Spark Streaming	
Spark Core					
Kubernetes / Standalone	Spark Native	Mesos	Yarn	Custom	Managers
Azure ACS			Azure HDI	Azure Databricks	Platforms

Spark On Kubernetes

- Resource sharing / utilization across Spark and Cassandra
- Simplified deployment model(ie helm, deis, spark-submit, etc)
- Streamlined developer experience(ie kubectl, etc)
- High Availability Kubernetes orchestrator replaces Zookeeper
- Elastic executor scaling with kubectl min/max replicas
- Simplify dev ops with distributed env/config map, monitoring & logging

UN OCHA Deployment

Fortis k8s Setup

Azure Container Service

Standard Docker tooling and API support Provisioning of DC/OS, Docker, and K8s Linux and Windows Server containers

Kubernetes with ACS

\$ az acs create -g myResourceGroup -n myCluster \
--generate-ssh-keys --orchestrator-type kubernetes
Running ..

Kubernetes with ACS / ACS-Engine

acs-engine for advanced configurations:

k8s version, network, GPU, rbac, private registry, disk type, linux distro, etc.

http://github.com/azure/acsengine

"properties": { "orchestratorProfile": { "orchestratorType": "Kubernetes", "orchestratorRelease": "1.7", "orchestratorVersion": "1.7.9", "kubernetesConfig": { "kubernetesImageBase": "gcrio.azur "clusterSubnet": "10.244.0.0/16", "dnsServiceIP": "10.0.0.10", "serviceCidr": "10.0.0.0/16", "networkPolicy": "none", "nonMasqueradeCidr": "10.0.0.0/8", "maxPods": 110, "dockerBridgeSubnet": "172.17.0.1/ "nodeStatusUpdateFrequency": "10s" "ctrlMgrNodeMonitorGracePeriod": "4 "ctrlMgrPodEvictionTimeout": "5m0s" "ctn]ManDoutoDoconciliationDoniod"

Kubernetes with AKS

Hosted Control Plane

Networking Benchmark

- Spark (k8s)
 - 64 Core Cluster
 - Single DC
 - Azure L16s, 16vCPUs, 128GB, 2087GB SSD
- Cassandra (VMs)
 - 24 Core Cluster
 - Single DC
 - Azure L4s, 4vCPUs, 32GB, 678GB SSD
- Cassandra Config
 - Replica Factor: 2
 - LOCAL_QUORUM
- Activity Data

٠

20M activities, 20B locations

33.76 hrs

TEXAS

https://github.com/timfpark/heatmap

Cassandra Azure HA

- 1 Pod Per Node
 - Node Affinity
- Azure Fault Domain Aware
 - Customized Docker Image
 - Azure Metadata Service
 - Azure Fault Domain: Rack
 - Azure Region: DC
 - GossipingPropertyFileSnitch

https://github.com/xtophs/azure-fault-domain-on-dcos-nodes

Multi Azure DC Architecture

github.com/xtophs/acs-k8s-cassandra-multi-dc

Hybrid Cloud Setup

Multi Cloud Setup

K8s Federation or DIY

Federation	DIY
In Flux	You can do it!
Limited Production Use	Leverage built-in HA (cloud, packages)
Automated DNS Management	Levreage Cloud Services (Azure Traffic Manager, DNS)
Azure Support not GA	

- Cassandra / Spark Helm Charts: <u>github.com/CatalystCode/charts</u>
- Multi-DC Cassandra: <u>github.com/xtophs/acs-k8s-cassandra-multi-dc</u>
- Fortis: <u>github.com/CatalystCode/project-fortis-pipline</u>
- Cross-Cloud Networking: <u>https://github.com/dcasati/openbsd-on-azure</u>
- Heatmap Calculations: <u>https://github.com/timfpark/heatmap</u>
- Spark Speech To Text: <u>https://www.microsoft.com/developerblog/2017/11/01/building-a-custom-spark-connector-for-near-real-time-speech-to-text-transcription/</u>
- Azure Container Service Engine: <u>https://github.com/azure/acs-engine</u>

Questions

·····

90 Y . S 7

10 1

Level and

00000

821.0

N

22.2.

7 9 0

6 The K

33.56

15 84:

.

10

. . .

1 . . .

8:0

.....

200X

~ %

2. 1. 2. 2.

. 6. 6.

22.5

39 8 40

......