
101 Ways to Crash Your Cluster
Marius Grigoriu, Sr. Technology Manager, Nordstrom
Emmanuel Gomez, Principal Engineer, Nordstrom



Kubernetes at Nordstrom

• Reviews
• Giftcard
• Purchase	Orders
• Authentication
• Personalization
• And	more

µServices



Kubernetes at Nordstrom

• Issue	tracking

• Build	runners

• Log	aggregation

• Telemetry	aggregation

• Alerting

Dev Tools



Our Stories

The Tale of the Unresponsive Node

The Unresponsive Node RETURNS

In the Eye of the Node NotReady Storm

The Day the [Cluster Autoscaler] Robots Turned Against Us

Split Personality etcd Cluster



The Tale of the Unresponsive Node

Once upon a time, we were alerted to a few nodes going NotReady. 

So we described the node to find out what was being reported...

kubelet stopped posting status



Looking into the past

Top slows way down, very slow in between refreshes. 

Eventually freezes.

While frozen, we notice that kswapd is consuming... all the CPU.



The Tale of the Unresponsive Node
$ dmesg –HT

[Tue Nov 14 04:11:38 2017] stress: page allocation stalls for 10047ms, 
order:0, mode:0x14280ca

[Tue Nov 14 04:11:24 2017] Out of memory: Kill process 40884 (sh) 
score 999 or sacrifice child

[Tue Nov 14 04:11:24 2017] Killed process 91984 (dd) total-vm:4420kB, 
anon-rss:76kB, file-rss:0kB, shmem-rss:0kB

[Tue Nov 14 04:11:24 2017] oom_reaper: reaped process 91984 (dd), now 
anon-rss:0kB, file-rss:0kB, shmem-rss:0kB



NotReady Node Troubleshooting Steps

1. Run:	kubectl describe node

2. “Kubelet stopped	posting	node	status”

3. Look	for	signs	of	high	resource	utilization

4. Search	through	kernel	messages	(dmesg)	if	suspecting	OOM	kills



Lessons Learned

Set your kubelet flags correctly
• Set	eviction	thresholds

• https://kubernetes.io/docs/tasks/administer-cluster/out-of-
resource/

• Evict	early

• Reserve	enough	resources	for	kubelet and	system	daemons

• https://kubernetes.io/docs/tasks/administer-cluster/reserve-
compute-resources/

• --kube-reserved and	--kube-reserved-cgroup

• --system-reserved and	--system-reserved-cgroup





The Eye of the NodeNotReady Storm

teeturtle.com



NotReady Storm Checklist

1. Run: kubectl describe node

2. “kubelet stopped	posting	node	status”

3. Look	for	signs	of	high	resource	utilization

4. Is	there	a	networking	issue?

5. kubelets messed	up?

6. apiserver messed	up?

7. Oh	look,	everything’s	OK	now



Following the trail of clues
50% of nodes NotReady

Sometimes 33% 
or 25% 
NotReady

All nodes recover at the same time

Kubelets stopped 
posting status at the 
same time

Exactly 15 minutes each time

External load balancer scaled down



Lessons Learned

Fixes for the Node NotReady Storm
• Caused	by	lack	of	timeout	or	heartbeat	kubelet->apiserver

• https://github.com/kubernetes/kubernetes/issues/48638

• Switch	from	Elastic	Load	Balancer	to	Network	Load	
Balancer

• “NLB	handles	connections	with	built-in	fault	tolerance,	
and	can	handle	connections	that	are	open	for	months	
or	years”

• Fixed	in	1.8	(backported	to	1.7.8)

• https://github.com/kubernetes/kubernetes/pull/52176



The Day The Autoscaler Robots Turned Against Us

The day cluster autoscaler
turned against us

… suddenly our cluster shrank to a 
handful of nodes...



All the nodes went away checklist

1. kubectl get nodes shows	only	a	handful	of	nodes

2. Look	at	ASG	logs

3. Look	at	cluster	autoscaler logs

4. Find	utilization	of	0.0



Lessons Learned

The [Cluster Autoscaler] Robots

• We	have	not	been	able	to	determine	true	root	cause

• Diagnostic	data	aged	out

• Open-ended	work	of	diagnosing	yielded	to	pressure	to	move	
on

• Mea	culpa–we	should	have:

• Durably	captured	our	diagnostic	data	(logs,	metrics,	etc)

• Promptly	opened	an	upstream	issue



Lessons Learned

The [Cluster Autoscaler] Robots

• We	worked	around	it

• Extended	‘smoothing	function’	(min	scale	down)	to	40	
minutes

• Better	still	(but	not	yet	implemented)

• Alert	when	planning	to	scale	down	too	low

•We	don’t	have	a	good	way	to	alert	for	what	we	want

•Need	a	metric	on	number	of	nodes	that	will	be scaled	in,	not	
number	of	nodes	that	are	unneeded



Lessons Learned

The [Cluster Autoscaler] Robots

• Along	the	way	we	learned	some	surprising	things

• Implicit	session	affinity	of	Kubernetes	apiserver service	
(kubernetes.default.svc.cluster.local)

• https://github.com/kubernetes/kubernetes/pull/23129

• Disrespect	of	apiserver readiness	when	using	HA	config
with	--apiserver-count flag

• https://github.com/coreos/coreos-kubernetes/pull/730



Split Personality etcd Cluster

$ kubectl get pods
…returned one of two 
results, alternating

$ kubectl get nodes
…returned one of two 
results, alternating

Nothing made sense

More like two 
opinions of what 
was going on



Split Personality etcd Cluster

• This	is	not	a	conversation	one	looks	forward	to:



Split Personality etcd Cluster
• Especially	not	when	you	go	look,	and	see:



Split Personality etcd Cluster

• The	control	loops	started	misbehaving
• Thousands	of	pods

• Many	pending

• Many	terminating

• Service	endpoints	thrashing

• Ingress	controller	starting	to	do	bad	things



Lessons Learned

Split Personality etcd Cluster
• Bad	news

• Full	cluster	outage	on	primary	production	cluster

• Not	simply	out	of	service,	but	violently	wrong

• Time-to-resolution	was	long:	four	hours
• Spent	time	troubleshooting/diagnosing

• Then	replacing	the	cluster

• Provisioning	the	replacement	cluster	was	only	the	first	step

• Volumes	were	challenging

• needed	to	release	from	old	cluster,	rebind	on	new

• Cloud	load	balancers	also	challenging
• ephemeral	LB	names	were	referenced	in	manually-managed	DNS

• migrating	LBs	across	clusters	not	supported



Lessons Learned

Split Personality etcd Cluster

• Good	news
• Happened	during	working	hours

• Full	team	presence

• Able	to	analyze	and	resolve	root	cause
• Led	to	significant	improvements	in	understanding,	code,	and	

procedures



Lessons Learned

Split Personality etcd Cluster
• But	wait,	etcd is	a	consistent k/v	store,	right?
• Yes,	but…

• It	will	happily	return	stale	data	(when	configured	to	do	so)

• Stale	data	can	happen	multiple	ways

• This	is	documented	(we	had	even	RTFM!)

• The	Kubernetes	community	was	not	in	agreement	that	
quorum	reads	were	needed	(or	even	desirable)
• Not	mentioned	in	HA	docs	(until	Oct	2017)

• Concerns	about	performance	(etcd3	reduces	impact)

• And	soon	(in	Kubernetes	1.9)	quorum	reads	will	be	the	default	behavior



Lessons Learned

Split Personality etcd Cluster
• Write	latency	is	very	important

• This	is	healthy:

• This	is	not:



28



It takes a lot to run a 
cluster



Notes and references

• Problems	with	--apiserver-count flag
• https://github.com/kubernetes/kubernetes/issues/22609

• Fixed	by	“lease	endpoint	reconciler”	in	1.9:	
https://github.com/kubernetes/kubernetes/pull/51698

• Kyle	Kingsbury’s	Jepsen	test	of	etcd,	which	led	to	quorum	reads
• https://aphyr.com/posts/316-jepsen-etcd-and-consul

• Discussion	about	Kubernetes	apiserver using	quorum	reads
• https://github.com/kubernetes/kubernetes/issues/19902

• Brendan	Gregg	on	Linux	performance
• http://www.brendangregg.com/linuxperf.html




