
Regain control thanks to Prometheus
Guillaume Lefevre, DevOps Engineer, OCTO Technology
Etienne Coutaud, DevOps Engineer, OCTO Technology

About us

Guillaume Lefevre
DevOps Engineer, OCTO Technology
@guillaumelfv

Etienne Coutaud
DevOps Engineer, OCTO Technology
@etiennecoutaud

What we are dealing with

• Track every events of a package lifecycle

• Aggregate and compute events to generate relevant business data

• Store and serve results for consultation or further computing

What we are dealing with

2,000,000
packages / day

20,000,000
events / day

200 processes
running 24/7

CQRS Architecture

Kafka

Spark

streaming

API
Scala Front

Cassandra

ElasticSearch

● ~ 90 servers
● Whole configuration managed with

Zookeeper

Monitoring system metrics

Kafka

Spark

streaming

API
Scala Front

Cassandra

ElasticSearch

prometheus node_exporter

Zookeeper

Monitoring middleware metrics

Kafka

Spark

streaming

API
Scala Front

Cassandra

ElasticSearch

prometheus node_exporter

third-party exporters (specific exporter / JMX)

JMX
HAproxy
exporter

HAproxy
exporter

JMX

Homemade
exporter

JMX

Zookeeper
Zookeeper
exporter

Elasticsearch
exporter

Monitoring business metrics

Kafka

Spark

streaming

API
Scala Front

Cassandra

ElasticSearch

prometheus node_exporter

third-party exporters (specific exporter / JMX)

JMX

JMX JMX
HAproxy
exporter

HAproxy
exporter

Homemade
exporter

client library

business
metrics

business
metrics

Zookeeper
Zookeeper
exporter

Elasticsearch
exporter

Full stack

prometheus node_exporter

third-party exporters (specific exporter / JMX)

client library
Prometheus

AlertManager Mail

SlackGrafana
targets

Kafka

Spark

streaming

API
Scala Front

Cassandra

ElasticSearch

JMX

JMX JMX

Elasticsearch
exporter

HAproxy
exporter

HAproxy
exporter

Homemade
exporter

business
metrics

business
metrics

Zookeeper
Zookeeper
exporter

Data volume

~ 250
endpoints scrapped

~ 15,000
different metrics

~ 50 GB
data / day

Enabling metrics: node_exporter

$./node_exporter --web.listen-address 0.0.0.0:9100 --collector.systemd

Have a look at the “disabled by default” collectors
https://github.com/prometheus/node_exporter

Wrapped with systemd

https://github.com/prometheus/node_exporter

Enabling metrics: JMX

KAFKA_OPTS="-javaagent:/var/lib/jmx-exporter/jmx_prometheus_javaagent.jar=9999:/var/lib/jmx-exporter/kafka.yml"

Use the exporter as a java-agent at JVM startup

Kafka
JMX exporter

Prometheus

HTTP : 9999

JVM
JMX

Enabling metrics: Scala app

object InjectorReacApp extends SparkApp ({ (ssc: StreamingContext) =>

 ReacUserMetricsSystem.load("InjectorReacMetrics")(ssc.sparkContext)

object SparkAppMetrics extends ContextLogger {
 private lazy val handledXMLCounter: SparkCounter = ReacUserMetricsSystem.counter("handledXMLCounter")
 private lazy val measuredXMLCounter: SparkCounter = ReacUserMetricsSystem.counter("measuredXMLCounter")
 private lazy val handledMessagesCounter: SparkCounter = ReacUserMetricsSystem.counter("handledMessagesCounter")
 private lazy val rejectedMessagesCounter: SparkCounter = ReacUserMetricsSystem.counter("rejectedMessagesCounter")
 private lazy val succeededMessagesCounter: SparkCounter = ReacUserMetricsSystem.counter("succeededMessagesCounter")

Use the scala library to define metrics

Inject metrics into Spark context

SelfHealing using AlertManager + Jenkins

ALERT SparkWorkerDataFull
 IF node_filesystem_free{job='spark_system_metrics} < 0.05
 FOR 5m
 LABELS {
 severity = "high",
 environment = "production",
 selfhealing = "true",
 jenkins_job = "clean_data_worker"
 }
 ANNOTATIONS {
 summary = "Disk /data on {{ $labels.instance }} 95% full"
 }

route:
 - match:
 selfhealing: true
 jenkins_job: clean_data_worker
 receiver: jenkins-selfhealing-clean_data_worker

receivers:
- name: jenkins-selfhealing-clean_data_worker
 webhook_configs:
 - url: "http://jenkins:8080/job/production/clean_data_worker/build"

 AlertRule in Prometheus server

AlertManager config file

Our favorite Prometheus queries
● Topk: used to get largest K elements by sample value, useful to extract components from the

whole metrics

topk(3,(1 - node_memory_MemFree / node_memory_MemTotal))

Example: Get the 3 servers with the least free RAM percentage

● predict_linear: used to predict a value with a simple linear regression, useful to extrapolate disk
filling

predict_linear(node_filesystem_free{mountpoint='/data'}[1h], 6 * 3600) < 0

Example: Predict filesystem fullness in less than 6h

Demo time

Code available at: https://github.com/EtienneCoutaud/kubecon2017-demo.git

Kafka

App

Grafana

Prometheus Alert Manager

Jenkins

Slack

system metrics
middleware metrics
service metrics

inject read

start

https://github.com/EtienneCoutaud/kubecon2017-demo.git

How do ops use it?

• Self-healing & Alerting help you focus on delivering more value

• Predict failure and correct it to prevent outage and business loss

• Faster troubleshooting and root cause pinpointing

• Tune and improve configuration middleware parameters

• Discover bottleneck and improve overall platform performance

How do dev use it?

• Easier performance testing and benchmarking

• Bring visibility and confidence into the platform

• Give a comprehensible view of the platform & KPIs to top management

• Allow developers to add their own metrics, dashboards and alerts at
application level

Tip: Never stop tweaking

• Choose the right metrics

• Choose accurate thresholds

• Prevent alert fatigue

Continuous improvement is the best way to:

Tip: Mind your NTP

• Ensure all your applications, servers and monitoring platform are in-sync

• Servers and browser clocks must not be too far apart

Trick: Scraping interval tradeoff

Choose wisely based on your business requirements!

low scraping interval (5s) higher scraping interval (15s)

• Almost real-time

• CPU intensive (increase with endpoints)

• Robust Prom server or federation needed

• Metrics “lag effect”

• Use less server resources

• Sustain more endpoints

Golden tip

Work with your users!

What’s next?

• Upgrade to 2.0 to improve performance

• Explore advanced features (federation, HA & third party-storage)

• Improve trigger precision and alarms

• Set up dashboard drilling for faster investigation

• Automate incident responses because we are lazy

• Monitor the underlying infrastructure

Take-away

• FullStack Monitoring

• Fast to deploy, long to master

• Share it with everybody / Provide feedback to everyone

• Changes the way of working

• Prometheus has many differents exporters, you will surely find yours!

• The format makes it easy to build a custom exporter

