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What we are dealing with

• Track every events of a package lifecycle

• Aggregate and compute events to generate relevant business data

• Store and serve results for consultation or further computing



What we are dealing with

2,000,000
packages / day

20,000,000
events / day

200 processes 
running 24/7



CQRS Architecture
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Monitoring middleware metrics
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Monitoring business metrics
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Full stack
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Data volume

~ 250
endpoints scrapped

~ 15,000
different metrics

~ 50 GB
data / day 



Enabling metrics: node_exporter

$ ./node_exporter --web.listen-address 0.0.0.0:9100 --collector.systemd 

Have a look at the “disabled by default” collectors
https://github.com/prometheus/node_exporter

Wrapped with systemd

https://github.com/prometheus/node_exporter


Enabling metrics: JMX

KAFKA_OPTS="-javaagent:/var/lib/jmx-exporter/jmx_prometheus_javaagent.jar=9999:/var/lib/jmx-exporter/kafka.yml"

Use the exporter as a java-agent at JVM startup

Kafka
JMX exporter

Prometheus

HTTP : 9999

JVM
JMX 



Enabling metrics: Scala app

object InjectorReacApp extends SparkApp ({ (ssc: StreamingContext) =>

  ReacUserMetricsSystem.load("InjectorReacMetrics")(ssc.sparkContext)

object SparkAppMetrics extends ContextLogger {
  private lazy val handledXMLCounter: SparkCounter = ReacUserMetricsSystem.counter("handledXMLCounter")
  private lazy val measuredXMLCounter: SparkCounter = ReacUserMetricsSystem.counter("measuredXMLCounter")
  private lazy val handledMessagesCounter: SparkCounter = ReacUserMetricsSystem.counter("handledMessagesCounter")
  private lazy val rejectedMessagesCounter: SparkCounter = ReacUserMetricsSystem.counter("rejectedMessagesCounter")
  private lazy val succeededMessagesCounter: SparkCounter = ReacUserMetricsSystem.counter("succeededMessagesCounter")

Use the scala library to define metrics

Inject metrics into Spark context



SelfHealing using AlertManager + Jenkins

ALERT SparkWorkerDataFull
  IF node_filesystem_free{job='spark_system_metrics} < 0.05
  FOR 5m
  LABELS {
    severity = "high",
    environment = "production",
    selfhealing = "true",
    jenkins_job = "clean_data_worker"
  }
  ANNOTATIONS {
    summary = "Disk /data on {{ $labels.instance }} 95% full"
  }

route:
  - match:
      selfhealing: true
      jenkins_job: clean_data_worker
    receiver: jenkins-selfhealing-clean_data_worker

receivers:
- name: jenkins-selfhealing-clean_data_worker
  webhook_configs:
  - url: "http://jenkins:8080/job/production/clean_data_worker/build"

 AlertRule in Prometheus server

AlertManager config file



Our favorite Prometheus queries
● Topk: used to get largest K elements by sample value, useful to extract components from the 

whole metrics 

topk(3,(1 - node_memory_MemFree / node_memory_MemTotal))

Example: Get the 3 servers with the least free RAM percentage

● predict_linear: used to predict a value with a simple linear regression, useful to extrapolate disk 
filling

predict_linear(node_filesystem_free{mountpoint='/data'}[1h], 6 * 3600) < 0

Example: Predict filesystem fullness in less than 6h



Demo time

Code available at: https://github.com/EtienneCoutaud/kubecon2017-demo.git
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start

https://github.com/EtienneCoutaud/kubecon2017-demo.git


How do ops use it?

• Self-healing & Alerting help you focus on delivering more value

• Predict failure and correct it to prevent outage and business loss

• Faster troubleshooting and root cause pinpointing

• Tune and improve configuration middleware parameters

• Discover bottleneck and improve overall platform performance



How do dev use it?

• Easier performance testing and benchmarking

• Bring visibility and confidence into the platform

• Give a comprehensible view of the platform & KPIs to top management

• Allow developers to add their own metrics, dashboards and alerts at  
application level



Tip: Never stop tweaking 

• Choose the right metrics

• Choose accurate thresholds

• Prevent alert fatigue

Continuous improvement is the best way to:



Tip: Mind your NTP 

• Ensure all your applications, servers and monitoring platform are in-sync

• Servers and browser clocks must not be too far apart



Trick: Scraping interval tradeoff

Choose wisely based on your business requirements!

low scraping interval (5s) higher scraping interval (15s)

• Almost real-time

• CPU intensive (increase with endpoints)

• Robust Prom server or federation needed

• Metrics “lag effect”

• Use less server resources

• Sustain more endpoints



Golden tip

Work with your users!



What’s next?

• Upgrade to 2.0 to improve performance

• Explore advanced features (federation, HA & third party-storage)

• Improve trigger precision and alarms

• Set up dashboard drilling for faster investigation

• Automate incident responses because we are lazy

• Monitor the underlying infrastructure



Take-away

• FullStack Monitoring

• Fast to deploy, long to master

• Share it with everybody / Provide feedback to everyone

• Changes the way of working

• Prometheus has many differents exporters, you will surely find yours!

• The format makes it easy to build a custom exporter


