
THE PATTERNS OF DISTRIBUTED LOGGING
AND CONTAINERS

CloudNativeCon Europe 2017
March 30, 2017

Satoshi Tagomori (@tagomoris)
Treasure Data, Inc.

SATOSHI TAGOMORI
(@tagomoris)

Fluentd, MessagePack-Ruby, Norikra, ...

Treasure Data, Inc.

1. Microservices, Containers and Logging
2. Scaling Logging Platform
3. Patterns: Source/Destination -side Aggregation
4. Patterns: Scaling Up/Out Destination
5. Practices

MICROSERVICES,
CONTAINERS AND LOGGING

Logging in Industries

• Service Logs

• Web access logs

• Ad logs

• Commercial transaction logs for analytics (EC, Game, ...)

• System Logs

• Syslog and other OS logs

• Audit logs

• Performance metrics

Logs for Growth

Logs for Stability

Microservices and Logging

Users

LAMP/Rails/MEAN/... Apps

Logs

Users

Search

Logs

Recommendation Shopping cart Reviews Ads ...

Monolithic service Microservices

Microservices and Containers

• Microservices

• Isolated dependencies

• Agile deployment

• Containers

• Isolated environments & resources

• Simple pull&restart deployment

• Less overhead, high density

Logging Challenges with Microservices/Containers

• Containerization changes everything:

• No permanent storages

• No fixed physical/network addresses

• No fixed mapping between servers and roles

Logging Challenges with Microservices/Containers

• Containerization changes everything:

• No permanent storages

• No fixed physical/network addresses

• No fixed mapping between servers and roles

Transfer Logs to Anywhere ASAP

Logging Challenges with Microservices/Containers

• Containerization changes everything:

• No permanent storages

• No fixed physical/network addresses

• No fixed mapping between servers and roles

Push Logs From Containers

Logging Challenges with Microservices/Containers

• Containerization changes everything:

• No permanent storages

• No fixed physical/network addresses

• No fixed mapping between servers and roles
Label Logs With Service Names/Tags

Logging Challenges with Microservices/Containers

• Containerization changes everything:

• No permanent storages

• No fixed physical/network addresses

• No fixed mapping between servers and roles
Label Logs With Service Names/Tags

Parse Logs & Label Values At Source

Structured Logs

Structured Logs: tag, time, key-value pairs
Original log:

the customer put an item to cart: item_id=101, items=10, client=web

Structured log:

ec_service.shopping_cart
2017-03-30 16:35:37 +0100
{
"container_id": "bfdd5b9....",
"container_name": "/infallible_mayer",
"source": "stdout",
"event": "put an item",
"item_id": 101,
"items": 10,
"client": "web"
}

How to Ship Logs from Docker Containers

nginx, mysql,

log files

agents

read files,
parse plain texts

apps, middleware

json log files

agents

read files,
parse json lines

applications

agents

just receive
transferred logs

apps, middleware

agents

just receive
transferred logs

Using
mounted volume

Using
container json logs

Sending logs
to agents directly

Using
logging drivers

+ disk I/O penalty
+ mount points + disk I/O penalty + logger code

+ agent config 😃

SCALING LOGGING PLATFORM

Core Architecture: Distributed Logging

Source (Container + Agent)

Transferring/Aggregation layer

Destination (Storage, Database, Service)

Distributed Logging Workflow

• Retrieve raw logs: file system / network
• Parse log contentCollector

Aggregator

Destination

• Get data from multiple sources
• Split/merge incoming data into streams

• Retrieve structured logs from Aggregator
• Store formatted logs

Core Architecture: Distributed Logging

Source

Transferring
Aggregation

Destination

Scaling Logging
• Network Traffic

• Split heavy log traffic into traffics to nodes

• CPU Load

• Distribute processing to nodes about parsing/formatting logs

• High Availability

• Switch traffic from a node to another for failures

• Agility

• Reconfigure whole logging layer to modify destinations

PATTERNS:
SOURCE/DESTINATION -SIDE
AGGREGATION

Source Side Aggregation

Destination
Side

Aggregation

NO

YES

YESNO

Now I'm Talking About:

Source

Transferring
Aggregation

Destination

Source Side

Destination Side

Source-side Aggregation Patterns

Without
Source-side Aggregation

With
Source-side Aggregation

Collector

Destination-side

Aggregate
Container

Aggregation Pattern without Source-side Aggregation

• Pros:

• Simple configuration

• Cons:

• Fixed aggregator (destination endpoint) address 
configured in containers

• Many network connections

• High load in aggregator / destination

Aggregation Pattern with Source-side Aggregation

• Pros:

• Less connections

• Lower load in aggregator / destination

• Less configurations in containers

• More agility 
(aggregate containers can be reconfigured)

• Cons:

• Need more resources (+1 container per host)

Aggregate
Container

Destination-side Aggregation Patterns

Without
Destination-side Aggregation

With
Destination-side Aggregation

Aggregator
Node

Source-side

Destination

Aggregation Pattern without Destination-side Aggregation

• Pros:

• Less nodes

• Simpler configuration

• Cons:

• Destination changes affects all source nodes

• Worse performance:  
 many small write requests on destination(storage)

• Pros:

• Destination changes does NOT affect source nodes

• Better performance:  
 destination aggregator can merge write operations

• Cons:

• More nodes

• More complex configuration

Aggregation Pattern with Destination-side Aggregation

Aggregator
Node

PATTERNS:
SCALING UP/OUT DESTINATION

Scaling Destination Patterns

Scaling Up
Aggregator/Destination Endpoints

Scaling Out
Aggregator/Destination Endpoints

Destination-side
Aggregator

or
Destination

Load balancer
orHuge queue

Backend
nodes

Collector
nodes

Using HTTP Load Balancer
or Huge Queues Using Round Robin Clients

HOW TO SCALE HERE

Source

Transferring
Aggregation

Destination

Now I'm Talking About:

• Pros:

• Simple configuration:  
 specifying load balancer only  
 in collector nodes

• Cons:

• Upper limits about scaling up 
 on Load balancer (or queue)

Scaling Up Destination

Backend
nodes

Load balancer
or

Huge queue

Scaling Out Destination

• Pros:

• Unlimited scaling by adding nodes

• Cons:

• Complex configuration in collector nodes

• Client feature required for round-robin

• Unavailable for traffic over Internet

Destination-side Aggregation and Destination Scaling
Destination Side Aggregation

Scaling Up
Destination
Endpoints

YESNO

Scaling Out
Destination
Endpoints

Early Stage Systems
Collect Logs over

Internet
or

Using Queues

Collect Logs
in Data Center

All Collector Nodes Must Know
All Destination Nodes

↓
Uncontrollable

PRACTICES

Practices: Docker + Fluentd

• Docker Fluentd Logging Driver

• Docker containers can send these logs to Fluentd directly,  
with less overhead

• Fluentd's Pluggable Architecture

• Various destination systems (storage/database/service) are available  
by changing configuration

• Small Memory Footprint

• Source aggregation requires +1 container per hosts:  
less additional resource usage is fine!

Practice 1: Source-side Aggregation + Scaling Up

• Kubernetes: Fluentd + Elasticsearch

• a.k.a EFK stack (inspired by ELK stack)

• Elasticsearch - Fluentd - Kibana

https://kubernetes.io/docs/tasks/debug-application-cluster/logging-elasticsearch-kibana/

apps, middleware

json log files

Practice 2: Source-side Aggregation + Scaling Up

• Containerized Applications

• w/ Google Stackdriver for Monitoring

• w/ Treasure Data for Analytics

Google Stackdriver Logging

apps, middleware

Practice 3: Source/Destination-side Aggregation + Scaling Out

• Containerized Application

• w/ Log processing on Hadoop

• writing files on HDFS via WebHDFS

• Hadoop HDFS prefers large files on HDFS:

• Destination-side aggregation works well

apps, middleware

Make Logging Scalable,
Service Stable & Business Growing.

Happy Logging!
@tagomoris

