
Tales from Lastminute.com machine room:
our journey towards a full on-premise
kubernetes architecture in production

michele.orsi@lastminute.com
manuel.ranieri@lastminute.com

KubeCon - Berlin, 29-30 March 2017

An inspiring travel company ..

A tech company to the core

Tech department: 300+ people

Applications: ~100

Database: 4 TB of data

Servers: 1400 VMs, 300 physical machines

Locations: Chiasso, Milan, Madrid, London, Bengaluru

Business: "technology is slow"

https://www.pexels.com/photo/turtle-walking-on-sand-132936/

Technology: "the monolith is the problem"

https://www.flickr.com/photos/southtopia/5702790189

https://www.pexels.com/photo/gray-pebbles-with-green-grass-51168/

"... let’s break into microservices!"

A lot of issues

● LONG provisioning time

● LACK OF alignment across environments

● LACK OF alignment across applications

● LACK OF awareness about ops

A year-long endeavour

● build a new, modern infrastructure

● migrate the search (flight/hotel) product there

... without:

● impacting the business
● throwing away our whole datacenter

https://www.pexels.com/photo/colorful-toothed-wheels-171198/

Our infrastructure and our architecture

Virtualization platform

TONS

OF

VIRTUAL MACHINES

Virtualization platform

TONS

OF

VIRTUAL MACHINES

● CoreOS, the all-in-one choice

○ Cloudconfig configuration

○ Automatable in a shot

○ Really simple patch management

Engage

Our Kubernetes on CoreOS architecture is born

● The stack
○ ETCD
○ FLANNELD
○ DOCKER

● KUBERNETES (Google!)

K8S

DOCKER

FLA
N

N
E

LD

E
T

C
D

CoreOS

P
o

d
P

o
d

P
o

d

Server

NODE 2

NODE 1

NODE 2

NODE 1

How to talk with pods

NGINX

NGINX

Pod

Pod

Pod

Pod

Pod

np

np

np

Pod

Pod

Pod

Proxy

np

np

Pod

Pod

Pod
np

Proxy

Proxy

Proxy

F5 F5

tcp http

NodePort Ingress

In the name of service

 - host: awesomeservice.prd.mykubecluster.intra
 http:
 paths:
 - path: /
 backend:
 serviceName: awesomeservice
 servicePort: 8081

awesomeservice-ingress.yaml

In the name of service

*.[prd|qa|dev].mykubecluster.intra. IN CNAME kubef5ingress

The return of NodePort

np

np

Pod

Pod

Pod

np Proxy

NODE n

F5 TLS TLS
TLS

tcp

TLS

The registry brought another question...

?

Seriously?

Rear window on kubernetes

Server

graphite

OS
collectd

image

Nagios first
Grafana 4 now

icons from http://www.flaticon.com

Kube API

http://www.flaticon.com

We were happy!

Not happy anymore

Seriously?

The change… It’s a kind of magic

KEEP
CALM

and
TRUST KUBERNETES

What we learned

Lots of things!

The final architecture (so far…)

K8S

DOCKER

FLA
N

N
E

LD

E
T

C
D

Ubuntu

P
o

d
P

o
d

P
o

d

F5

O
U

TS
ID

E
KU

BE
RN

ET
ES INSIDE KUBERNETES:

3 different environments
7 MASTERS

2 REGISTRYs
+ 70 PHYSICAL NODES

+ 47 ETCDs
+ 7 DNS

+ 140 Namespaces
+ 1300 PODs

ingress

Our infrastructure and our architecture

https://www.pexels.com/photo/colorful-toothed-wheels-171198/

Our core axioms

● same architecture across environments
● a common framework to align software
● centralized monitoring/logging, with alerts
● zero downtime deployment
● automation everywhere

APP3-PRODUCTION

Kubernetes: our architecture

APP2-PRODUCTIONAPP1-PRODUCTION

APP3-PRODUCTIONAPP2-PRODUCTIONAPP1-PREVIEW

APP3-PRODUCTIONAPP2-PRODUCTIONAPP1-DEVELOPMENT

APP3-PRODUCTIONAPP2-PRODUCTIONAPP1-QA

nonproductionproduction

Kubernetes: our architecture and choices

APP1-PRODUCTION

deployment

replica-set

app1-production.prd.mykubecluster.intra

secret configmap

POD-3POD-2POD-1

production

"To ingress or not to ingress? .."

NODE 1

NODE 2

NODE 3

● easier DNS management
● customizable proxy server

● 3rd party tool
● requires external sync
● all requests go through it
● reload risks

F5

NGINX

NGINX

APP1-PRODUCTION

Kubernetes: our architecture and choices

POD

production

applicationfluentd
collectd

carbon

APP1-PRODUCTION

POD

Monitoring and alerting: grafana/graphite
cluster

graphite

application
collectd

Grafana 4

icons from http://www.flaticon.com

carbon

http://www.flaticon.com

Zero downtime (1): graceful shutdown

lifecycle:
 preStop:
 exec:
 command: ["/stop_helper.sh"]

deployment.yaml

#!/bin/bash

wget http://localhost:8002/stop

stop_helper.sh

Zero downtime (2): graceful startup

private CompletableFuture run(Stream<CompletableFuture> startupJobs)
 {

 return allOf(startupJobs.toArray(CompletableFuture[]::new))
 .thenAccept(this::raiseReadinessUp)
 .exceptionally(this::shutdown);

 }

JobsExecutor.java

Automate everything: pipeline DSL

microservice = factory.newDeployRequest()
.withArtifact("com.lastminute.application1",2)
.fromGitRepo("git.lastminute.com/team/application")

lmn_deployCanaryStrategy(microservice,"qa")
lmn_deployCanaryStrategy(microservice,"preview")
lmn_deployCanaryStrategy(microservice,"production")

pipeline

Automate everything: pipeline

pull
jar

build
docker

(gate)

QA
canary

(gate)

QA
stable

(gate)

PREV
canary

(gate)

PREV
stable

(gate)

PROD
canary

(gate)

PROD
stable

● git push
○ continuous integration
○ continuous delivery

https://www.flickr.com/photos/ghost_of_kuji/2763674926

.. failure ..

nginx ingress controller problem

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

NGINX

NGINX

NGINX

10.0.0.5

10.0.0.6

F5

https://www.pexels.com/photo/grayscale-photography-of-person-at-the-end-of-tunnel-211816/

There’s light .. at the end

● 20K req/sec in the new cluster
● 10 minutes to create a new environment
● whole pipeline runs in 16 minutes

○ 4 minutes to release 100 instances of a new version
● 2M metrics/minute flows

Give me the numbers .. again!

Yes, we’re hiring!

THANKS
www.lastminutegroup.com

