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An inspiring travel company ..



A tech company to the core 

Tech department: 300+ people

Applications: ~100

Database: 4 TB of data

Servers: 1400 VMs, 300 physical machines

Locations: Chiasso, Milan, Madrid, London, Bengaluru 



Business: "technology is slow"

https://www.pexels.com/photo/turtle-walking-on-sand-132936/



Technology: "the monolith is the problem"

https://www.flickr.com/photos/southtopia/5702790189



https://www.pexels.com/photo/gray-pebbles-with-green-grass-51168/

"... let’s break into microservices!"



A lot of issues

● LONG provisioning time

● LACK OF alignment across environments

● LACK OF alignment across applications

● LACK OF awareness about ops 



A year-long endeavour

● build a new, modern infrastructure

● migrate the search (flight/hotel) product there

... without:

● impacting the business
● throwing away our whole datacenter



https://www.pexels.com/photo/colorful-toothed-wheels-171198/

Our infrastructure and our architecture



Virtualization platform

TONS
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● CoreOS, the all-in-one choice

○ Cloudconfig configuration

○ Automatable in a shot 

○ Really simple patch management

Engage



Our Kubernetes on CoreOS architecture is born

● The stack
○ ETCD
○ FLANNELD
○ DOCKER

● KUBERNETES (Google!)
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How to talk with pods
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In the name of service

  - host: awesomeservice.prd.mykubecluster.intra
    http:
      paths:
      - path: /
        backend:
          serviceName: awesomeservice
          servicePort: 8081

awesomeservice-ingress.yaml



In the name of service

*.[prd|qa|dev].mykubecluster.intra.  IN CNAME  kubef5ingress 



The return of NodePort
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The registry brought another question...

?



Seriously?



Rear window on kubernetes
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Nagios first 
Grafana 4 now

icons from http://www.flaticon.com

Kube API

http://www.flaticon.com


We were happy!



Not happy anymore



Seriously?



The change… It’s a kind of magic

KEEP 
CALM 

and
TRUST KUBERNETES



What we learned

Lots of things!



The final architecture (so far…)
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3 different environments
7 MASTERS

2 REGISTRYs
+ 70 PHYSICAL NODES

+ 47 ETCDs
+ 7 DNS

+ 140 Namespaces
+ 1300 PODs

ingress



Our infrastructure and our architecture

https://www.pexels.com/photo/colorful-toothed-wheels-171198/



Our core axioms

● same architecture across environments
● a common framework to align software
● centralized monitoring/logging, with alerts
● zero downtime deployment 
● automation everywhere



APP3-PRODUCTION

Kubernetes: our architecture
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Kubernetes: our architecture and choices

APP1-PRODUCTION

deployment

replica-set

app1-production.prd.mykubecluster.intra

secret configmap

POD-3POD-2POD-1

production



"To ingress or not to ingress? .."

NODE 1

NODE 2

NODE 3

● easier DNS management
● customizable proxy server

● 3rd party tool
● requires external sync
● all requests go through it
● reload risks
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APP1-PRODUCTION

Kubernetes: our architecture and choices
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APP1-PRODUCTION

POD

Monitoring and alerting: grafana/graphite
cluster
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Zero downtime (1): graceful shutdown

lifecycle:
   preStop:
      exec:
         command: ["/stop_helper.sh"]

deployment.yaml

#!/bin/bash

wget http://localhost:8002/stop

stop_helper.sh



Zero downtime (2): graceful startup

private CompletableFuture run(Stream<CompletableFuture> startupJobs)
  {

    return allOf(startupJobs.toArray(CompletableFuture[]::new))
      .thenAccept(this::raiseReadinessUp)
      .exceptionally(this::shutdown);

  }

JobsExecutor.java



Automate everything: pipeline DSL

microservice = factory.newDeployRequest()
.withArtifact("com.lastminute.application1",2)
.fromGitRepo("git.lastminute.com/team/application")

        
lmn_deployCanaryStrategy(microservice,"qa")    
lmn_deployCanaryStrategy(microservice,"preview")
lmn_deployCanaryStrategy(microservice,"production")

pipeline



Automate everything: pipeline 
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● git push
○ continuous integration
○ continuous delivery



https://www.flickr.com/photos/ghost_of_kuji/2763674926

.. failure ..



nginx ingress controller problem
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https://www.pexels.com/photo/grayscale-photography-of-person-at-the-end-of-tunnel-211816/

There’s light .. at the end



● 20K req/sec in the new cluster
● 10 minutes to create a new environment 
● whole pipeline runs in 16 minutes

○ 4 minutes to release 100 instances of a new version
● 2M metrics/minute flows

Give me the numbers .. again!



Yes, we’re hiring!

THANKS
www.lastminutegroup.com


