
Network independent ACLs
Why Security shouldn’t always

be tied to your network
Bernard Van De Walle, Aporeto

@bvandewa

Once upon a time...

Security levels

Once upon a time...

Perimeter security

Once upon a time...

Micro-Services

Once upon a time...

Distributed firewalls

Once upon a time...

SDN and VPN
solutions

Once upon a time...

Provisioning assets

Once upon a time...

Exponential
Complexity

Once upon a time...

Network
≠

Network security

Zero Trust Networking

Network is insecure by default

Threat model: inside network as insecure as outside network

Network primitives are irrelevant

IP and Port numbers do not carry any information

Flows need to be authorized

Every connection results from a successful authorization/authentication

Declarative policy language

High-level language to automate policy creation/deployment
(Yet Another Policy Language)

Zero Trust Networking

● Context and Identity used for
flow authentication

● Network identity ≠ Endpoint
identity

● Secure by default

● Keep the network simple

Kubernetes
Zero-Trust networking in

Kubernetes

Kubernetes Networking (reachability)

● Based on CNI

● Built-in (GKE, …) or plugin based

● IP doesn’t carry any information

Kubernetes objects

● Associated Identity

○ Name
○ Namespace
○ Labels

apiVersion: v1
kind: Pod
metadata:
 name: external
 namespace: demo
 labels:
 role: external
 app: nginx
spec:
 [...]

Kubernetes network policies

● White list model

● No default
implementation

● Ingress only

apiVersion: extensions/v1beta1
kind: NetworkPolicy
metadata:
 name: backend-policy
 namespace: demo
Spec:
 [...]

Kubernetes network policies

● Explicit activation per
namespace

● Annotation for activation

kind: Namespace
metadata:
 name: demo
 Annotations:
 net.beta.kubernetes.io

 /network-policy: |
 {
 "ingress": {
 "isolation":"DefaultDeny"
 }
 }

Kubernetes network policies

● Rules apply to specific
Pods

● Pods selected based on
labels
role=backend

apiVersion: extensions/v1beta1
kind: NetworkPolicy
spec:
 podSelector:
 matchLabels:
 role: backend
 ingress:
 - from:
 - podSelector:
 matchLabels:
 role: frontend

Kubernetes network policies

● Rule defines Pods
allowed to send traffic

● Allowed traffic selected
based on labels
role=frontend

apiVersion: extensions/v1beta1
kind: NetworkPolicy
spec:
 podSelector:
 matchLabels:
 role: backend
 ingress:
 - from:
 - podSelector:
 matchLabels:
 role: frontend

Kubernetes network policies

● Rules are additive

● Each rule allows
additional traffic

apiVersion: extensions/v1beta1
kind: NetworkPolicy
spec:
 podSelector:
 matchLabels:
 role: backend
 ingress:
 - from:
 - podSelector:
 matchLabels:
 role: admin

Implementations
Tied to networking backend

Because Policing is based on IPs

Trireme
https://github.com/aporeto-inc/trireme-kubernetes

● Identity is the pod label

● IP irrelevant. Network
independent

● Compatible with any
Networking backend

https://github.com/aporeto-inc/trireme-kubernetes
https://github.com/aporeto-inc/trireme-kubernetes

E2E authentication

● Identity added
on TCP flows
handshake

● Identity signed

“Demo Time”

Cluster federation

With Zero-Trust Networking

Network reachability
≠

Network security

More about zero-trust

● Encryption

● Visibility

● Auditing

Thanks!
 @bvandewa

Trireme on Github:
https://github.com/aporeto-inc/
trireme-kubernetes

Demo code and slides:
https://github.com/bvandewalle/
kubecon-zerotrust

https://github.com/aporeto-inc/trireme-kubernetes
https://github.com/aporeto-inc/trireme-kubernetes
https://github.com/aporeto-inc/trireme-kubernetes
https://github.com/aporeto-inc/trireme-kubernetes
https://github.com/bvandewalle/kubecon-zerotrust
https://github.com/bvandewalle/kubecon-zerotrust
https://github.com/bvandewalle/kubecon-zerotrust
https://github.com/bvandewalle/kubecon-zerotrust

