
Kubernetes from Dev to Prod
Subhas Dandapani, CI/CD Platform Lead, GoEuro

Subhas Dandapani
CI/CD Platform Lead

medium.com/@rdsubhas
github.com/rdsubhas

12 countries
30k+ stations
200+ airports

10+ million monthly searches

- 50 engineers, 10 services → 150 engineers, 50 services
- 10 coordinated releases → 150+ independent releases per week
- Legacy → CI/CD/Docker/K8s

Excluding persistent services

- Through all kinds of legacy problems
Integration patterns: REST, File, MQ, DB-driven, Metrics-driven, Compile-time, Ancillary artifacts
Dev hacks for ops issues, Ops hacks for dev issues

- Transition in 4 months across company
(ground work laid before in a pilot project)

Transition Journey

Development

From the bottom up: hyper-vm
- Single-node k8s+docker VM for development
- docker build & kubectl apply on same node
- Metadata based kubernetes customization

(e.g. installing services at bootup)
- Optimized for development & testing in the cloud

docker bind mounting (nested resolv, etc), integrate with internal network,
build-arg-activated docker server patches (build caching), etc

- First point to upgrade kubernetes from dev to prod

hyper
vm

docker

k8s
master

Development
service-repo
├ ops
├─ Dockerfile
├─ helm chart
├─ ci.yaml
├─ Makefile

- Every service has "ops" folder
- Self-contain most dev+ops requirements

docker build
hyper
vm

docker

k8s
master

service-repo
├ ops
├─ Dockerfile
├─ helm chart
├─ ci.yaml

y8s (yaml-k8s-sharing)
- Adopt Helm Chart standard/layout/templating
- But Render-as-a-service
- Additional simplification:

- 1 input: “env”, configure everything else out of the box
- env=dev: use local image
- env=test: use stubs (provider-driven stubs/mocks)
- env=qa/preprod/prod: pin revision
- Optional params (overrides, etc)

y8s (yaml-k8s-sharing)
kubectl apply -f
 http://y8s.int/repos/any-service-repo
 ?env=<test|dev|qa|...>
 &values[foo]=bar&filters[kind]=Service&...

- kubectl apply any repo
- DevOps services also applied/deployed same way

(router, ingress, core services, database, couchbase, etc)
- Additional REST options (values, filters, validate, dry run, json/yaml content

types, etc) and generated metadata (for tracing back to source)

hyper
vm

docker

k8s
master

Landscape
Develop Integrate Deploy

hyper-vm
develop in the cloud

ops/chart in repo
self contained repos

y8s
consume any repo/service

Integration

service-repo
├ ops
├─ Dockerfile
├─ helm chart
├─ ci.yaml

- Adopt GitLab CI.yaml syntax/design
- But parse/implement it ourselves
- Automate all CI pipelines/jobs
- We orchestrate all triggers, do all plumbing

pr checks, manual checkpoints, cron jobs, distributed caching, nested
docker builds, environments, retry/reassignment rules, slack notifications,
emails, release annotations/graphs, etc

CI Contract

https://docs.gitlab.com/ce/ci/yaml/#gitlab-ci-yml

GKEGKE

image: jenkins-plain:latest

unit-tests:
 stage: test
 script: test.sh

master:
 script: release.sh

deploy-qa:
 environment:
 name: qa
 credentials: "..."
 script: deploy.sh

deploy-preprod:
deploy-prod:
 ...

ci.yaml

PR
checks master shared

qa

hyper-vm
agent

hyper-vm
agent GKE

preprod,
prod,

...

GKE

- Every agent is hyper-vm + jenkins slave
- docker/kubectl readily configured
- Jobs run inside configurable build images
- Recreate from source every 2 hours

with no downtime, no possibility of snowflake CI

- Encourage early integration tests
kubectl apply -f y8s.g.int/repos/anything and test

- Take Jobs all the way to Prod (safety in upcoming slides)

CI Contract

hyper
vm

docker

k8s master

+jenkins
swarm

Job Environment - Closer Look #1
image: jenkins-plain:latest
my-job:
 script: make build

- Start using docker/kubectl right away
- Cleaned up after every build
- Early Integration/E2E tests
kubectl apply -f "y8s.int/...dependencies..."
kubectl run / docker run <e2e tests>

my-job

agent is a
hyper-vm

my-job:
 script: make deploy
 environment:
 name: preview-24h

- Provision on-the-fly ephemeral hyper-vm
Same build contract, kubectl/docker readily pointed to that VM

- But lives after job completes
- Show demos, connect for development/debugging

Job Environment - Closer Look #2
my-job

24h
preview-vm

Job Environment - Closer Look #3
my-job:
 script: make deploy
 environment:
 name: qa|preprod|prod-region
 credentials: <credentials>

- Apply to Deploy! Including prod regions
- We’ll talk about security in later slides

my-job

GKE
qa|prod|...

my-job:
stage: pr
when: manual
environment:

name: preview-24h

Composition
Run on PRs

when: manual
on pipelines: manual checkpoint
on PRs: comment “trigger my-job”

Product demos on demand,
GitHub Flow (deploy from PR to prod), etc

And boot an ephemeral preview VM

Patterns
- Database migrations

- kubectl run --overrides=$(curl -H ...json y8s.g.int/...migration)

- End to end testing
- Shared E2E tests treated as services, have their own ops folder as well
- kubectl apply y8s.g.int/repos/... && kubectl run <e2e-tests>

- Additional Services
- helm templates for services like selenium, couchbase, mysql, etc
- kubectl apply y8s.g.int/...services…
- No need for additional abstraction (like travis-ci services, for example)

Landscape
Develop Integrate Deploy

hyper-vm
develop in the cloud

ops/chart in repo
self contained repos

y8s
consume any repo/service

ready environments
preview, qa, preprod, prod, ...

ci.yaml
pipelines & patterns

hyper-vm + ci agent
early E2E in CI

Deployment

auth8s
qa

preprod
prod
...

- Kubernetes API gateway/proxy
- Deployed in every k8s cluster, proxies to kubernetes master

- Security
- Each namespace gets its own username/password

k8s 1.6 RBAC is in “beta”, this security part can be offloaded to k8s when its stable

- Compliance
- Validate and enforce CPU/Memory Limits, Live/Readiness probes, ...
- Necessary annotations on every resource, whitelisted resource kinds, ...
- Much more using HTTP interception, Necessary for Governance and Standards
- Supports most features (except interactive shells)

GKE

- Auto-register DNS for independent clusters
- Metrics: heapster, restart counters, etc
- Logging: Ship structured container logs using filebeat
- Routing: nodePort, containerizing current router, etc

- Moving to: Ingress
- Automatically instrument external health checks (pingdom-style)

Value additions: Cluster services

Value additions: Sidecar and Regional services
- Sidecar container for big artifacts for legacy services
- Region-specific external services

- All devops-managed external resources (db, logstash, etc) have their
own pipelines and yamls

- Provide containerized/test in dev/qa/preprod/etc
- Endpoints pointing to persistent resources in prod

- Multi-region focused from the beginning

- Coming up: More annotation-driven cluster services
- Capture periodic thread-dumps by declaring annotations
- Autoscale by declaring metric queries in annotations
- Automated external uptime checks and status pages for ingresses
- etc

Value additions: Annotation driven

Landscape
Develop Integrate Deploy

hyper-vm
develop in the cloud

ops/chart in repo
self contained repos

y8s
consume any repo/service

ready environments
preview, qa, preprod, prod, ...

value added services
routing, logs, metrics, dns, ...

auth8s
security, compliance

gke
best kubernetes experience

ci.yaml
generated pipelines & jobs

hyper-vm + ci agent
early E2E in CI

Learnings

- Containers are a cultural change
- Lots of presentations, PoCs, consulting, lobbying, “we needed this yesterday”
- We did at same time: CI, CD, Unversioning, Dockerizing, Kubernetizing
- Couldn’t have done without support from teams, managers, product, business
- Don’t try too much: Changing monitoring, routing, building, processes, etc.

- Migrate as-it-is
- Services closer to 12factor, With small dep-graph, Hard legacy challenges
- 5 minute bootup, 400 MB images, Dev vs Ops hacks, etc
- Run with 0% traffic, Shadow comparison, QA/Preprod, Traffic switching
- Establish the pipe, Optimize later

What we learned?

What we learned?
- Work with feature teams

- Get out of the DevOps desk/room/...
- Be part of their journey
- Let them own their success
- Avoid same mistake of dev vs ops silos

- Embrace Standards, Validate Subset
- Too many DevOps tool ~micro-JS explosion
- Choose wisely, Draw boundaries, Be compatible

- Less tools, More APIs, More Dogfooding

- Transition from Cloud resources => Container resources
- From Cloud: Disk Image + InstanceGroup/ASG + LoadBalancer
- To Container: Docker Image + K8s Deployment + K8s Service/Ingress
- From: packer build, terraform apply
- To: docker build, kubectl apply

- Allow teams to deliver from Dev to Prod
- Balance safety, compliance, automation and ease-of-use

- Transition legacy and modern services
- Integrate and iterate fast, next 1000 releases per week

What Kubernetes Enabled Us

- Site Reliability Engineering
- Teams deliver up to prod-x%
- Rollout to rest automatically based on metrics

- Better State Management
- Secret Management

- Multiple possibilities, ci.yaml, auth8s, etc

- Ingress, Federation
- Namespace Quotas

- Virtual data center, Team budgets, etc

Stepping Forward

ENGINEERING

CI/CD/Tooling/VAS

INFRA

SRE

Questions

