
Steve Sandke
Principal Architect
Salesforce

ssandke@salesforce.com

Bringing Kubernetes into Salesforce

Forward-Looking Statements

 Statement under the Private Securities Litigation Reform Act of 1995:

 This presentation may contain forward-looking statements that involve risks, uncertainties, and assumptions. If any such uncertainties materialize or
if any of the assumptions proves incorrect, the results of salesforce.com, inc. could differ materially from the results expressed or implied by the
forward-looking statements we make. All statements other than statements of historical fact could be deemed forward-looking, including any
projections of product or service availability, subscriber growth, earnings, revenues, or other financial items and any statements regarding strategies
or plans of management for future operations, statements of belief, any statements concerning new, planned, or upgraded services or technology
developments and customer contracts or use of our services.

 The risks and uncertainties referred to above include – but are not limited to – risks associated with developing and delivering new functionality for
our service, new products and services, our new business model, our past operating losses, possible fluctuations in our operating results and rate of
growth, interruptions or delays in our Web hosting, breach of our security measures, the outcome of any litigation, risks associated with completed
and any possible mergers and acquisitions, the immature market in which we operate, our relatively limited operating history, our ability to expand,
retain, and motivate our employees and manage our growth, new releases of our service and successful customer deployment, our limited history
reselling non-salesforce.com products, and utilization and selling to larger enterprise customers. Further information on potential factors that could
affect the financial results of salesforce.com, inc. is included in our annual report on Form 10-K for the most recent fiscal year and in our quarterly
report on Form 10-Q for the most recent fiscal quarter. These documents and others containing important disclosures are available on the SEC
Filings section of the Investor Information section of our Web site.

 Any unreleased services or features referenced in this or other presentations, press releases or public statements are not currently available and may
not be delivered on time or at all. Customers who purchase our services should make the purchase decisions based upon features that are currently
available. Salesforce.com, inc. assumes no obligation and does not intend to update these forward-looking statements.

Agenda

Motivations

Lining It Up

Decisions, Decisions

What We Built

Where We Are

Motivations

 118% é

 124% é

 100% é

 104% é

 94% é

Enabling Phenomenal Customer Success

99.97% Availability

 50 Production Instances

 490 Billion Transactions
•  230ms average latency

 10 Data Centers
•  1st in EMEA – London

 194 MC Customer Databases

 247 Billion emails sent

99.98% Availability

 109 Production Instances

 1.1 Trillion Transactions
•  210ms average latency

 20 Data centers
•  3 in EMEA – London, Paris, Frankfurt

 395 MC Customers Databases

 478 Billion emails sent

 Growth Across The Clouds

 2014 2016

Infrastructure Engineering Principles

 One Salesforce
•  Leverage best practices and common processes

 Design Principles
•  Service Ownership: Software Engineers operate

the services they create

•  Recovery-oriented software architectures

•  Prefer scale-out architectures

•  Simple, consistent hardware

•  Measure and improve key metrics such as
availability through continuous application and
platform changes

 Integrating and Scaling

 Software Defined Everything
•  Compute

•  Storage

•  Security

•  Networks

Task Manual
(“Ops”)

Automated
(“DevOps”)

Autonomous !
(“No Ops”)

Sets the goal Human Human Human

Decides when to start the work Human Human Machine

Adjudicates work priorities Human Human Machine

Does the work Human Machine Machine

Generates the validation report Human Machine Machine

Interprets the validation report Human Human Machine

Handles failures Human Human Machine

Handles exceptions Human Human Human

Evolving for Scale
 From Manual & Automated to Autonomous Operations

Looking for a New Way

Easy Onboarding for new services

High Fidelity between production and nonproduction environments

Declarative rather than imperative

Secure by Default to enhance our security profile

Fully Automated to cut human involvement and error

Usable across public cloud and private data centers

Simple. Secure. Automated.

 We wanted:

A Simple Model

 Deployment artifacts are containers

 Provide a health probe

 Declare your desired deployment state

 Automation gets you safely to your desired state and keeps you there.

We call it the Salesforce Application Model (SAM)

Lining It Up

We Chose Kubernetes

 Open source, container based

 High development velocity

 Opportunity to affect direction

 Opportunity to help build it

 Broad-based, welcoming community

 Project vision aligned with our own

From Decision to Delivery

 We needed Exec Support

 We needed Cross Company Collaboration

 We needed Launch Partners

The Right Launch Partners Are Key

 Comfortable with ambiguity

 Interested in defining a new platform

 Covering a spectrum within our organization

 Willing to wait to ship

 Stateless

Internal Services to prove things out.

Decisions, Decisions

A Light Abstraction Over Kubernetes

 Guard rails are important

 Exposing new features is easy

 Taking features away is hard

 We needed infrastructure related extensions anyway.

 Deployment Manifest: a unified set of Deployment and Service specifications.

Git is the Master

 Deployment Manifests live in git
Pro: super easy to review proposed deployments

Pro: full history of all production deployments

Con: git can take a while to learn

 Deployment Request = Pull Request (PR)

 Deployment Approval = PR Approval

 Two factor authentication for PR approvals

One Unified Deployment Manifest Repository

All deployment manifests for all of production live in one git repository
Pro: easy to audit/view all production changes

Pro: easier for our tooling to consume

Con: repository is pretty noisy

Requires fine grained access control; we added it

Isolation Across Security Profiles

Security Profile:

•  Inbound/outbound communications

•  Data sensitivity

Container Isolation is nascent, so we don’t
fully rely on it (yet)

A node is associated with one security profile
at a time

Nodes are isolated across security profiles

Node 1

Node 6

Node 3

Node 4 Node 5

Node 2

Kubernetes Pods
Security Profile 1

Security Profile 2

What We Built

Deployment Manifests

Functions à Deployments

LoadBalancers à Services

(Eventually) Salesforce Infrastructure
Controls

•  Alerting Rules

•  Audit Hooks

 Deployments and Services in one artifact
functions:  
- name: sample  
 count: 4  
 containers:  
 - image: simpletest:1.0.4  
 ports:  
 - containerPort: 9090  
 livenessProbe:  
 httpGet:  
 path: /  
 port: 9090  
 
loadbalancers:  
- lbname: samplelb  
 function: sample  
 ports:  
 - port: 8000  
 targetPort: 9090

Overall Flow

node node

node node

Manifests Docker
registry

Production DC

R&D

git
Build

Pipelines

SAM
Controller

Kubernetes
Controller

Service
Owner

Kubernetes Cluster

SAM Control Plane

git

Service
Owner

Deployment
Manifests Code

Deployments Go In Parallel

gitBuild Pipeline

Service
Owner

git

Service
Owner

Deployment
Manifests Code

DC1 DC2 DC3

Where We Are

Today and Tomorrow
 30 minutes from manifest merge to deployment

 >20 Services In Production

 >1000 Kubernetes Nodes

 All Data Centers run Kubernetes

 >20 Kubernetes Clusters

 Hundreds Daily Service Deployments

 Many Kubernetes contributions

 A Couple Services In Production

 <100 Kubernetes Nodes

 Few Data Centers run Kubernetes

 <10 Kubernetes Clusters

 Dozens Daily Service Deployments

 1 Kubernetes contribution

 Now End 2017

There’s More To Do

Scaling out

 Easier onboarding

 More infrastructure abstractions

•  Logging, cert management, secrets integration, …

 More visibility into service state

 Support clustered applications

•  Redis sentinel, Redis cluster, ...

 Persistence

Persistence

 Static Local Disk Mounts
•  Work for many apps

•  Great for lightweight caching
capability

•  We do this ourselves with a
local agent.

Persistent Volumes
•  StatefulSets + Automatic

Upgrades

•  Requires a persistent backend

Dynamic Local Disk Mounts
•  Locally mounted disks

•  Strong Kubernetes Pod to
Node affinity

•  Not built (yet)

We’re Happy To Be Part of the Community

 We’re using Kubernetes in other areas as well

 We have Kubernetes deployed and hosting live services

 Our service owners are excited

 We are hiring!

 We’re contributing and want to contribute more

Thank Y u

