

Autoscaling in Kubernetes

Marcin Wielgus, Senior Software Engineer, Google

Autoscaling in Kubernetes

Marcin Wielgus, Senior Software Engineer, Google

"How many?

"Idon't know,

" I think I need... "

Avg. utilization

How big is it?

15% utilization

Are we so rich?

KubeCon

Why to overprovision?

- Lack of the knowledge of the real use.
- Hard to change the deployment.
- Lack of automation.

Autoscaling

Automatically adapt to the current needs.

Autoscaling in Kubernetes

Horizontal Pod Autoscaler

Controls the number of replicas in deployments.

Cluster Autoscaler

Controls the number of nodes in the cluster.

Vertical Pod Autoscaler

Controls the amount of requested CPU and Memory for a Pod.

And Horizontal Pod Autoscaler

Autoscaling replica count

- Maintain a decent load.
- Ensure needed redundancy.
- Operate within your quota.

• If pods are heavily loaded then starting new pods may bring average load down.

• If pods are heavily loaded then starting new pods may bring average load down.

• If pods are heavily loaded then starting new pods may bring average load down.

- If pods are heavily loaded then starting new pods may bring average load down.
- If pods are barely loaded then stopping pods will free some resources and the deployment should still be ok..

- If pods are heavily loaded then starting new pods may bring average load down.
- If pods are barely loaded then stopping pods will free some resources and the deployment should still be ok.

- If pods are heavily loaded then starting new pods may bring average load down.
- If pods are barely loaded then stopping pods will free some resources and the deployment should still be ok.

- If pods are heavily loaded then starting new pods may bring average load down.
- If pods are barely loaded then stopping pods will free some resources and the deployment should still be ok.
- Specify the target for the load and try to be as close as possible to it.

 $\left\lceil rac{\sum_{i \in \texttt{Pods}} \texttt{Usage}_i}{\texttt{Target}}
ight
ceil$

- Pod 1 = 70%
- Pod 2 = 80%
- Target = 50%

- Pod 1 = 70%
- Pod 2 = 80%
- Target = 50%
- Sum = 150%
- Replica Count => 3.

What is usage?

CurrentCpuConsumption

PodCpuRequest

Other Details

- Margins
- Ready/unready pods
- Missing or broken metrics
- Spikes

HPA - how to enable

\$ kubectl autoscale deployment foo-app --min=2 --max=10 --cpu-percent=70

deployment "foo-app" autoscaled

HPA Architecture

• Declare requests for Pods.

- Declare requests for Pods
- Set target well below 100%.

- Declare requests for Pods
- Set target well below 100%.
- Target 70% gives you:

- Declare requests for Pods
- Set target well below 100%.
- Target 70% gives you:
 - Large window for traffic increase within the currently running pods

- Declare requests for Pods
- Set target well below 100%.
- Target 70% gives you:
 - Large window for traffic increase within the currently running pods
 - Ability to have >30% more replicas after the first HPA iteration

- Declare requests for Pods
- Set target well below 100%.
- Target 70% gives you:
 - Large window for traffic increase within the currently running pods
 - Ability to have >30% more replicas after the first HPA iteration

• Keep you pods and nodes healthy.

- Keep you pods and nodes healthy.
- kubectl top
- kubectl describe hpa

Name:	nginx	
Namespace:	default	
Labels:	<none></none>	
Annotations:	<none></none>	
CreationTimestamp:	Wed, 20 Ma	ar 2017 07:26:46 +0000
Reference:	Deployment/ngi	inx
Metrics:	(current / target)	
resource cpu on pods (as a percentage of request): 0% (0) / 70%		
Min replicas:	1	
Max replicas:	10	
Events:		
FirstSeen LastSee	n Count From	SubObjectPath Type
Reason Me	ssage	
11s 11s	1 horizontal-pod-autoscaler	Normal
SuccessfulRescale	New size: 1; reason: A	
Il metrics below target		

- Keep you pods and nodes healthy.
- kubectl top
- kubectl describe hpa
- Custom metrics (like Queries Per Second)

HPA Best Practices

• Make sure that your requests are short and well load balanced between pods

Node Count

and Cluster Autoscaler

• All pods should have a place to live.

- All pods should have a place to live.
- Pods are created and deleted.

- All pods should have a place to live.
- Pods are created and deleted.
- There is Horizontal Pod Autoscaler.

- All pods should have a place to live.
- Pods are created and deleted.
- There is Horizontal Pod Autoscaler.
- Node count good for today may be bad tomorrow.

- All pods should have a place to live.
- Pods are created and deleted.
- There is Horizontal Pod Autoscaler.
- Node count good for today may be bad tomorrow.
- Nodes are expensive. Spendthrift is bad.

- All pods should have a place to live.
- Pods are created and deleted.
- There is Horizontal Pod Autoscaler.
- Node count good for today may be bad tomorrow.
- Nodes are expensive. Spendthrift is bad.
- Pods are important. Stinginess is bad.

KubeCon

Automation

is needed!

• Pods are scheduled based on their declared resource requests.

- Pods are scheduled based on their declared resource requests.
- If there is enough resources the pod is scheduled.

- Pods are scheduled based on their declared resource requests.
- If there is enough resources the pod is scheduled.

- Pods are scheduled based on their declared resource requests.
- If there is enough resources the pod is scheduled.
- If there is no enough resources then a new node has to be added.

- Pods are scheduled based on their declared resource requests.
- If there is enough resources the pod is scheduled.
- If there is no enough resources then a new node has to be added.

- Pods are scheduled based on their declared resource requests.
- If there is enough resources the pod is scheduled.
- If there is no enough resources then a new node has to be added.
- If there are too many resources in the cluster then some nodes should be removed.

- Pods are scheduled based on their declared resource requests.
- If there is enough resources the pod is scheduled.
- If there is no enough resources then a new node has to be added.
- If there are too many resources in the cluster then some nodes should be removed.

- Pods are scheduled based on their declared resource requests.
- If there is enough resources the pod is scheduled.
- If there is no enough resources then a new node has to be added.
- If there are too many resources in the cluster then some nodes should be removed.

3000 ft view

Over Cluster Autoscaler.

fa terenguler G nyfigi annan 19 Juli - Jonalers verser, faste D 19 Jahobenny Pyvers, gaste Ar mangele Isas, vill aftersverse Galaderson denner Jonatour

ER

Cluster Autoscaler

- Runs on the master node in a separate pod.
- Maintains API server watches on all nodes and pods in the cluster.
- Doesn't use any node or pod-level metrics.

Nodes in Cluster Autoscaler

- Node groups:
 - MIGs (GCE/GKE)
 - Autoscaling Groups (AWS)
 - ScaleSets (Azure)

• If the cluster is in a good shape.

- If the cluster is in a good shape.
- If there are unschedulable pods.

- If the cluster is in a good shape.
- If there are unschedulable pods.

KubeCon

A CNCF EVENT

• Which of the node groups can be expanded to accommodate these pods and expands one of them.

- If the cluster is in a good shape.
- If there are unschedulable pods.

KubeCon

A CNCF EVENT

- Which of the node groups can be expanded to accommodate these pods and expands one of them.
- How much the nodes are utilized and which can be removed.

- If the cluster is in a good shape.
- If there are unschedulable pods.
- Which of the node groups can be expanded to accommodate these pods and expands one of them.
- How much the nodes are utilized and which can be removed.

KubeCon

• Which nodes could be removed for long enough and removes one of them.

According to current heuristic, a node can be considered unneeded if:

According to current heuristic, a node can be considered unneeded if:

• Its utilization is below 50%.

According to current heuristic, a node can be considered unneeded if:

- Its utilization is below 50%.
- When all of the pods running on the node can be moved elsewhere.

According to current heuristic, a node can be considered unneeded if:

• Its utilization is below 50%.

KubeCon

- When all of the pods running on the node can be moved elsewhere.
- There are no kube-system pods

According to current heuristic, a node can be considered unneeded if:

- Its utilization is below 50%.
- When all of the pods running on the node can be moved elsewhere.
- There are no kube-system pods
- There are no pods with local storage.

When to kill a node?

- Node was unneeded for 10 minutes.
- There was no scale up in the last 10 minutes.

Node killing process

• Pod Disruption Budget is used.

Node killing process

- Pod Disruption Budget is used.
- Graceful termination is honoured up to 1min.

Node killing process

- Pod Disruption Budget is used.
- Graceful termination is honoured up to 1min.
- VM running the node is removed by the cloud provider.

Node killing process

- Pod Disruption Budget is used.
- Graceful termination is honoured up to 1min.
- VM running the node is removed by the cloud provider.
- Empty nodes are killed in bulk

KubeCon

Node killing process

- Pod Disruption Budget is used.
- Graceful termination is honoured up to 1min.
- VM running the node is removed by the cloud provider.
- Empty nodes are killed in bulk
- Non-empty 1 at a time

• Do not manually modify single nodes within a node group (e.g. DO NOT add extra labels)

- Do not manually modify single nodes within a node group (e.g. DO NOT add extra labels)
- Declare requests for Pods.

- Do not manually modify single nodes within a node group (e.g. DO NOT add extra labels)
- Declare requests for Pods.

KubeCon

• Use Pod Disruption Budgets.

- Do not manually modify single nodes within a node group (e.g. DO NOT add extra labels)
- Declare requests for Pods.
- Use Pod Disruption Budgets.
- CA works best with homogenous clusters.

- kubectl describe configmap
- kubectl get events

\$ kubectl describe configmap cluster-autoscaler-status --namespace=kube-system

[...]

Cluster-autoscaler status at 2017-03-27 14:08:11.175840061 +0000 U Cluster-wide:

Health: Healthy (ready=3 unready=0 notStarted=0 longNotStart registered=3)

	LastProbeTime:	2017-03-27	14:08:10.731267279	+(
	LastTransitionTime:	2017-03-27	13:57:17.347440444	+(
ScaleUp:	InProgress (ready=3	ady=3 registered=3)		
	LastProbeTime:	2017-03-27	14:08:10.731267279	+(
	LastTransitionTime:	2017-03-27	14:07:28.866558907	+(
ScaleDown:	NoCandidates (candidates=0)			
	LastProbeTime:	2017-03-27	14:08:11.175630989	+(
	LastTransitionTime:	2017-03-27	13:57:17.665322299	+ (

NodeGroups:

https://content.googleapis.com/compute/v1/projects/ Name: Health: Healthy (ready=2 unready=0 notStarted=0 longNotStart cloudProviderTarget=4)

LastProbeTime: 2017-03-27 14:08:10.731267279 +0 LastTransitionTime: 2017-03-27 13:57:17.347440444 +(ScaleUp: InProgress (ready=2 cloudProviderTarget=4) LastProbeTime: 2017-03-27 14:08:10.731267279 +0 LastTransitionTime: 2017-03-27 14:07:28.866558907 +0 ScaleDown: NoCandidates (candidates=0) LastProbeTime: 2017-03-27 14:08:11.175630989 +0 LastTransitionTime: 2017-03-27 13:57:17.665322299 +(

Still BETA?

What is missing?

What is missing to reach GA?

CA-friendly scheduler

The current one tries to spread pods and increases the number of reschedulings.

Easier configuration

Especially for non-GKE users.

More tests

Especially non trivial failure scenarios.

Stable status info

Switch to ComponentStatus.

+ User Feedback

What is missing to reach GA?

CA-friendly scheduler

The current one tries to spread pods and increases the number of reschedulings.

Easier configuration

Especially for non-GKE users.

More tests

Especially non trivial failure scenarios.

Stable status info

Switch to ComponentStatus.

+ User Feedback

Vertical Pod Autoscaling

What is that?

6 6

1

11

Vertical Pod autoscaler

- Goal automatically set container requests.
- Design almost completed.
- Alpha Proof Of Concept expected in June 2017.

SIG-Autoscaling

Every Thursday 17:30 Berlin time

There must be some...

