
In 2018, WePay’s infrastructure was integrated with Linkerd and fully 
migrated all the traffic to use Linkerd for all requests.





The big picture:

● How did we arrive at service mesh for our traditional infrastructure?
● Ties into the challenges that service mesh solved.

●

●



Business focus: We provide software solutions to marketplaces and other 
platforms to facilitate payments.



WePay provides public payment APIs that allow payment partners to 
synchronously authorize charge of payments they receive from their users.

Payments that are successfully authorized, are captured in the background where 
the actual money movement happens.



As a highly available payment service, the goal is to provide a very high success 
rate for the valid payments being sent to our APIs.

infrastructure or internal server issues internally could cause payment processing 
failures seen by API customers. This is not ideal!



A couple of years ago, these APIs were backed by a single monolithic application, 
running in Google Cloud.



To maintain an overall highly available product, various monitoring services were 
used to monitor the monolithic service’s activities.



For easier development:

● Monolith got refactored into smaller microservices
● Introduced Google Kubernetes Engine (GKE) to the environment to host all 

new microservices
● Groups of services were setup into different network subdomains and GKE 

clusters



...and applied the same monitoring best practices to the microservices



Details of microservices scope:

● NGINX terminates SSL to ensure secure s2s communications
● Services use a FQDN resolver (internal or external) to find their downstream 

services
● Services are responsible to generate necessary metrics and tracing 

information to monitor and debug the graph
● Prometheus gathers the generated metrics for aggregation and 

visualization
● Sensu is configured to test the same microservice entry points used by 

other services



●

●

●

●

Successfully developed the traditional infrastructure with things on the left:

● Every piece is monitored end-to-end with appropriate alerting.
● All pieces in the infra is configurable either through a centrally distributed 

configuration or service specific ones.
● Every piece can be upgraded independently with no effect on other pieces 

in the environment.
● Things like deployments, health checking, etc, are automated and handled 

by tools or pipelines.

The setup is complex and too closely integrated with services running on it, which 
doesn’t encourage big improvements. 

These challenges opened an opportunity to improve our traditional infrastructure. 
Inline with codable infrastructure (IaC), infrastructure needed to change to have the 
things on the right:

● Separation of concerns
● Adding/modifying/removing support for different protocols
● Easier and more maintainable life cycle
● Modern operations, e.g. more useful software load balancing features
● Zero config, zero code integration



Main goals of integrating with service mesh: Organization and 
modernization.

Going to infrastructure 2.0 with service mesh, involved three major steps.

●

●

●



Service mesh generally involves a data and a control plane, Linkerd proxies and 
Namerd, respectively:

● Proxies carry data around, deliver requests, etc.
● Namerd gives service discovery.

GKE regional clusters provide HA discovery for the service mesh infrastructure, by 
providing a LB for the horizontally scaled GKE masters.



Layering the service mesh infrastructure with the microservices layout:

● Microservices don’t need to resolve names for sending requests (Namerd 
provides discovery to the Linkerd proxies)

● As the requests go through Linkerd, trace information are generated by 
Linkerd and can be gathered for visualization

● All Linkerds generate metrics for system and request activities.



Services integrate with their proxies based on a sidecar (local) setup or a DaemonSet 
(per node).

Challenge: Injecting services with appropriate proxies for DaemonSet model at 
runtime.



Since we have both K8s and non-K8s services in the environment, using Linkerd 1 
to provide service mesh inside and outside of K8s with the same discovery scope 
within a single environment.

Scenarios:
● Monolith sends request to Service B
● Service A sends a request to Service C

In both scenarios the recipient of the request is discovered using the same 
discovery scope in Namerd.



Linkerd and Namerd instances generate over 1K metric points related to server and 
client that is gathered by Prometheus for visualization and debugging.



Aggregated metrics are used for alerting on important events in the environment.



Wide variety of visualizations can be achieved from the metrics available from 
Namerd and Linkerd.

Helps with debugging live issues and correlating events with their corresponding 
metrics from data and/or control plane.



High Availability...

Challenge: Ensuring that all services are discoverable within the scope, and can 
accept requests from other services.

A service registry drives the expectations for dynamically defining what discovery 
checks are run on Sensu.



Challenge: Checking that all expected services are routable within the scope of 
service mesh in the environment.

An internal probing service checks health:

● Handles both RESTful and gRPC health checking
● Handles both mesh and non-mesh health checking (used for comparing both 

behaviors at migration)
● Gives the same perspective as other services in the service mesh scope



Custom checks trigger alerts based on their own thresholds and alerting criteria.



★

★

★

★

By integrating the infrastructure with a service mesh, the infrastructure has become 
simpler and easier to maintain with more modern features.

Opportunities for improvement:

● Providing 100% live tracing is too expensive for proxies.
● Currently services like Instana help offload tracing from service mesh proxies



After setting up a highly available infrastructure and data plane, the focus is 
on maintaining all the pieces after the initial setup:

● Changing service mesh configurations
● Upgrading service mesh services

Ensuring all pieces can be maintained without affecting live traffic and 
independent of one another.

●

●



Challenge: Upgrading the service mesh infrastructure as live requests are going 
through the system.



Namerd upgrades are easier by building the service and its proxies into an 
independent, horizontally scalable, and isolated pods.

Any suitable release strategy like canary, rolling update, or blue/green can be used 
to upgrade the service and it’s configurations. This will not affect the live traffic, 
and rollbacks are easy in case of service or compatibility problems.



Challenges:

● Not interrupting live traffic
● Rolling out breaking changes
● Rolling out backward incompatible changes
● Rolling out config changes

DaemonSet (per node) setup is a more interesting scenario from upgrading 
perspective. In this setup, the Linkerd instances independent of any of the services’ 
life cycle that use it for routing requests.

Scenario:

● Node A and C Linkerds are upgraded in a rolling update fashion
● SVC 1 sends a request to SVC 2, and since Node C’s Linkerd is not available 

it is routed to Node A
● Node A’s Linkerd forwards the request successfully to SVC 2




