
Using eBPF to bring Kubernetes-
aware Security to the Linux Kernel

Dan Wendlandt – Isovalent
@danwendlandt @ciliumproject

Who am I?

@ @ @

Linux – A General Purpose Operating System

General Purpose OS Abstractions:
Processes, Files, IP Addresses, TCP ports

What would it mean to:
Optimize Linux for securely running Kubernetes-based microservices?

Runtime Attacks Happen When….

Existing set of software
systems (application
services, databases,

external APIs)

Application team has an
expected path of execution

and data flows.

Attacker finds an alternate
but still permitted path of
execution and data flow.

Runtime Security is About…

… while preventing execution
and dataflow paths not

intended by the app developers

Enabling apps to run,
and developers to move

as fast as possible…

What is BPF?

Highly efficient sandboxed virtual machine
in the Linux kernel.

Making the Linux kernel programmable at
native execution speed.

Origins in the humble “tcpdump”:
Berkeley Packet Filter

tcpdump -n dst host 192.168.1.1

BPF Concepts #1: Programs and Hook Points

submit_bio submit_bh()
journal_submit_commit_record()
jbd2_journal_commit_transaction()
mb_cache_list()

BPF Program Source Code

BPF
hook

Execution Stack in the Kernel

“Function-as-a-Service” for kernel events

llvm / clang

bpf() syscall

JIT
compiler

BPF Concepts #2: Maps

BPF Maps

Kernel

Userspace
BPF-Aware

Tool

ç bpf_map_lookup_elem()
bpf_map_update_elem() è

Highly Efficient:

• Fine-grained update of BPF
program config data (e.g.,
policy/load-blancing rules)

• Accumulation of visibility data
in-kernel, with only
summaries exported to
userspace.

Efficient data structures that persist across function invocation.

/sys/bpffs

https://lwn.net/Articles/664688/

https://lwn.net/Articles/664688/

BPF: Putting it All Together

eth0

connect(…)

Kernel

Userspace

BPF-Aware
Tool

App
Workload

Creates custom logic as pseudo C code, to be
run at a specific BPF trace point.

1

2 Compiles to BPF byte code

3 Loads byte code into kernel
using bpf() syscall.

Kernel verifies safety of code,
JIT-compiles for native perf.

4

5

BPF Maps

BPF program executes each time
trace point is invoked.

5
Highly efficient communication of
data between kernel + userspace
using BPF maps.

TCP/IP stock
(tc hook)

BPF Tech Adoption

● L3-L4 Load balancing
● Network security
● Traffic optimization
● Profiling

https://code.fb.com/open-
source/linux/

● QoS & Traffic optimization
● Network Security
● Profiling
● http://vger.kernel.org/lpc-

bpf2018.html#session-1

● Replacing iptables with BPF
● NFV & Load balancing (XDP)
● Profiling & Tracing

https://goo.gl/6JYYJW

● Performance Troubleshooting
● Tracing & Systems Monitoring
● Networking

http://www.brendangregg.com/blog
/2016-03-05/linux-bpf-
superpowers.html

10Learn More: http://docs.cilium.io/en/latest/bpf

https://code.fb.com/open-source/linux/
http://vger.kernel.org/lpc-bpf2018.html
https://goo.gl/6JYYJW
http://www.brendangregg.com/blog/2016-03-05/linux-bpf-superpowers.html

How You Can Use BPF

Toolkits for writing & running
arbitrary BPF programs / traces

Multi-use
BPF directly exposed

https://github.com/iovisor/bcc

https://github.com/iovisor/bpftrace

https://github.com/iovisor/kubectl-trace

Platforms built on / using BPF

Targeted Use Cases,
BPF under the covers

https://github.com/iovisor/bcc
https://github.com/iovisor/bpftrace
https://github.com/iovisor/kubectl-trace

Runtime Attacks Happen When….

Existing set of software
systems (application
services, databases,

external APIs)

Application team has an
expected path of execution and
data flows for normal behavior.

Attacker finds an alternate
but still permitted path of
execution and data flow.

K8s Microservices Runtime Attack Vectors

Buggy or Malicious
Main Service

Buggy or Malicious
Sidecar / Init Container

Insider with “kubectl exec”
for prod troubleshooting.

https://hackerone.co
m/reports/341876

https://www.exploit-
db.com/exploits/24487

kubectl exec -it jobposting /bin/bash
/root:#

https://kubernetes.io/docs/ta
sks/debug-application-
cluster/get-shell-running-
container/

https://hackerone.com/reports/341876
https://www.exploit-db.com/exploits/24487
https://kubernetes.io/docs/tasks/debug-application-cluster/get-shell-running-container/

Degrees of Freedom == Paths for Exploit

VS.

General Purpose OS leaves many
degrees of freedom for malicious

execution paths + data flows….

BPF lets us build an OS
security model tailored to

K8s microservices apps

Securing Microservices…

What unique attributes of Kubernetes microservices can we leverage?

Micro Services

Single service per-container,
launched as pid 0.

Additional code run as
init/sidecar containers.

Service code updated by
deployment of new container.

Identity tied to service being
implemented, not IP address

Service offers an API (HTTP,
gRPC, Kafka, Redis, etc) with
rich semantics well beyond
TCP/UDP port.

Identifying and Stopping Runtime Attacks

Measure
expected behavior

Monitor
possible deviations

Constrain
to expected behavior

Demo Time…

A New Microservices Stack is Emerging

Kubernetes Istio

App1 App2 App3

+ BPF

